Costa, David G.; Tehrani, Hossein; Thomas, Ralph Estimates at infinity for positive solutions to a class of \(p\)-Laplacian problems in \(\mathbb R^N\). (English) Zbl 1241.35107 J. Math. Anal. Appl. 391, No. 1, 170-182 (2012). Summary: We consider a class of logistic-type problems for the \(p\)-Laplacian in the whole space. Using minimization we prove existence of a positive solution and its behavior at infinity. We also consider questions of uniqueness and sharp estimates at infinity. Cited in 4 Documents MSC: 35J92 Quasilinear elliptic equations with \(p\)-Laplacian 35J62 Quasilinear elliptic equations 35B09 Positive solutions to PDEs 35B40 Asymptotic behavior of solutions to PDEs Keywords:logistic problems in \(\mathbb R^N\); \(p\)-Laplacian; positive solutions; estimates at infinity; minimization methods PDF BibTeX XML Cite \textit{D. G. Costa} et al., J. Math. Anal. Appl. 391, No. 1, 170--182 (2012; Zbl 1241.35107) Full Text: DOI References: [1] Allegretto, W.; Odiobala, P. O., Nonpositone problems in \(R^N\), Proc. Amer. Math. Soc., 123, 533-541 (1995) · Zbl 0812.35035 [2] Allegretto, Walter; Huang, Yin Xi, Eignevalues of the indefinite-weight p-Laplacian in weighted spaces, Funkcial. Ekvac., 38, 233-242 (1995) · Zbl 0922.35114 [3] Aomar, Anane, Simplicite et isolation de la premiere valeur propre du p-Laplacian avec poids, C. R. Acad. Sci. Paris, 305, 725-728 (1987) · Zbl 0633.35061 [4] Costa, David G.; Drabek, Pavel; Tehrani, Hossein T., Positive solutions to semilinear elliptic equations with logistic type nonlinearities and constant yield harvesting in \(R^N\), Comm. Partial Differential Equations, 33, 1597-1610 (2008) · Zbl 1156.35026 [5] Diaz, J., Nonlinear Partial Differential Equations and Free Boundaries. Volume I. Free Boundaries, Pitman Res. Notes Math. Ser., vol. 106 (1985) · Zbl 0595.35100 [6] Drabek, Pavel; Huang, Yin Xi, Bifurcation problems for the p-Laplacian in \(R^N\), Trans. Amer. Math. Soc., 349, 171-188 (1997) · Zbl 0868.35010 [7] Drabek, Pavel; Simander, Christian G., On general sovability properties of p-Laplacian-like equations, Math. Bohem., 127, 103-122 (2002) · Zbl 1030.35058 [8] Du, Yihong; Ma, Li, Positive solutions of an elliptic partial differential equation on \(R^N\), J. Math. Anal. Appl., 409-425 (2002) · Zbl 1007.35016 [9] Edelson, Allan L.; Rumbos, Adolfo J., Linear and semilinear eigenvalue problems in \(R^N\), Comm. Partial Differential Equations, 18, 215-240 (1993) · Zbl 0786.35101 [10] Fleckinger, J.; Manasevich, R. F.; Stavrakakis, N. M.; de Thelin, F., Principal eigenvalues for some quasilinear elliptic equations on \(R^N\), Adv. Differential Equations, 2, 981-1003 (1997) · Zbl 1023.35505 [11] Garcia-Melian, J.; de Lis, J. Sabina, Maximum and comparison principles for operators involving the p-Laplacian, J. Math. Anal. Appl., 218, 49-65 (1998) · Zbl 0897.35015 [12] Girão, P.; Tehrani, H., Positive solutions to logistic type equations with harvesting, J. Differential Equations, 247, 574-595 (2009) · Zbl 1170.35043 [13] Kilpelainen, Tero; Maly, Jan, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Sc. Norm. Super. Pisa Cl. Sci., 19, 591-613 (1992) · Zbl 0797.35052 [14] Kilpelainen, Tero; Maly, Jan, The wiener test and potential estimates for quasilinear elliptic equations, Acta Math., 172, 137-161 (1994) · Zbl 0820.35063 [15] Lindqvist, Peter, On a nonlinear eigenvalue problem, Berichte Univ. Jyvaskyla Math. Inst., 68, 33-54 (1995) · Zbl 0838.35094 [16] Lindqvist, Peter, On the equation \(div(| \nabla u |^{p - 2} \nabla u) + \lambda | u |^{p - 2} u = 0\), Proc. Amer. Math. Soc., 109, 157-164 (1990) · Zbl 0714.35029 [17] Murray, J. D., Mathematical Biology, Biomathematics, vol. 19 (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0779.92001 [18] Oruganti, Shobha; Shi, Junping; Shivaji, Ratnasingham, Diffusive logistic equation with constant yield harvesting, I: Steady states, Trans. Amer. Math. Soc., 354, 3601-3619 (2004) · Zbl 1109.35049 [19] Oruganti, Shobha; Shi, Junping; Shivaji, Ratnasingham, Logistic equation with the p-Laplacian and constant yield harvesting, Abstr. Appl. Anal., 723-727 (2004) · Zbl 1133.35370 [20] Struwe, Michael, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (2000), Springer · Zbl 0939.49001 [21] Tolksdorf, Peter, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51, 126-150 (1984) · Zbl 0488.35017 [22] Trudinger, Neil, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math., 20, 721-747 (1967) · Zbl 0153.42703 [23] Vazquez, J. L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 191-202 (1984) · Zbl 0561.35003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.