×

Homoclinic chaos in the Rössler model. (English) Zbl 1451.34060

Summary: We study the origin of homoclinic chaos in the classical 3D model proposed by Rössler in 1976. Of our particular interest are the convoluted bifurcations of the Shilnikov saddle-foci and how their synergy determines the global bifurcation unfolding of the model, along with transformations of its chaotic attractors. We apply two computational methods proposed, one based on interval maps and a symbolic approach specifically tailored to this model, to scrutinize homoclinic bifurcations, as well as to detect the regions of structurally stable and chaotic dynamics in the parameter space of the Rössler model.
©2020 American Institute of Physics

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34C28 Complex behavior and chaotic systems of ordinary differential equations

Software:

MATCONT
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Rössler, O. E., An equation for continuous chaos, Phys. Lett. A, 57, 397-398 (1976) · Zbl 1371.37062 · doi:10.1016/0375-9601(76)90101-8
[2] Rössler, O. E., Continuous chaos four prototype equations, Ann. N. Y. Acad. Sci., 316, 376-392 (1979) · Zbl 0437.76055 · doi:10.1111/j.1749-6632.1979.tb29482.x
[3] Rossler, O., An equation for hyperchaos, Phys. Lett. A, 71, 155-157 (1979) · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[4] Shilnikov, L. P., Dokl. Akad. Nauk SSSR, 160, 558-561 (1965)
[5] Letellier, C.; Rossler, O. E., Rössler attractor, Scholarpedia, 1, 1721 (2006) · doi:10.4249/scholarpedia.1721
[6] See https://en.wikipedia.org/wiki/Rössler_attractor for more information about “Rossler attractor.”
[7] Hénon, M., “A two-dimensional mapping with a strange attractor,” in The Theory of Chaotic Attractors, edited by B. R. Hunt et al. (Springer, 1976), pp. 94-102. · Zbl 0576.58018
[8] Ovsyannikov, I.; Shilnikov, L. P., On systems with a saddle-focus homoclinic curve, Mat. Sb., 172, 552-570 (1986) · Zbl 0628.58044 · doi:10.1070/SM1987v058n02ABEH003120
[9] Arneodo, A.; Coullet, P.; Tresser, C., Oscillators with chaotic behavior: An illustration of a theorem by Shilnikov, J. Stat. Phys., 27, 171-182 (1982) · Zbl 0522.58033 · doi:10.1007/BF01011745
[10] Turaev, D.; Shilnikov, L. P., An example of a wild strange attractor, Sb. Math., 189, 137-160 (1998) · Zbl 0927.37017 · doi:10.4213/sm300
[11] Turaev, D.; Shilnikov, L., Pseudohyperbolicity and the problem of periodic perturbation of Lorenz-like attractors, Dokl. Math., 77, 23-27 (2008) · Zbl 1157.37022 · doi:10.1134/S1064562408010055
[12] Afraimovich, V. S. and Shilnikov, L. P., “Strange attractors and quasiattractors,” in Nonlinear Dynamics and Turbulence, edited by G. I. Barenblatt, G. Iooss, and D. D. Joseph (Pitman, New York, 1983), pp. 1-28. · Zbl 0532.58018
[13] Gonchenko, S.; Shil’nikov, L. P.; Turaev, D., Quasiattractors and homoclinic tangencies, Comput. Math. Appl., 34, 195-227 (1997) · Zbl 0889.58056 · doi:10.1016/S0898-1221(97)00124-7
[14] Gonchenko, S.; Kazakov, A.; Turaev, D., Wild pseudohyperbolic attractor in a four-dimensional Lorenz system, Nonlinearity · Zbl 1472.34106
[15] Lempel, A.; Ziv, J., On the complexity of finite sequences, IEEE Trans. Inf. Theory, 22, 75-81 (1976) · Zbl 0337.94013 · doi:10.1109/TIT.1976.1055501
[16] Xing, T., Wojcik, J., Zaks, M. A., and Shilnikov, A. L., “Fractal parameter space of Lorenz-like attractors: A hierarchical approach,” in Chaos, Information Processing and Paradoxical Games: The Legacy of John S Nicolis (World Scientific, 2015), pp. 87-104.
[17] Xing, T.; Barrio, R.; Shilnikov, A. L., Symbolic quest into homoclinic chaos, Int. J. Bifurcation Chaos, 24, 1440004 (2014) · Zbl 1300.34101 · doi:10.1142/S0218127414400045
[18] Barrio, R., Blesa, F., Serrano, S., Xing, T., and Shilnikov, A. L., “Homoclinic spirals: Theory and numerics,” in Progress and Challenges in Dynamical Systems, Springer Proceedings in Mathematics & Statistics, Vol. 54 (2013).
[19] Pusuluri, K.; Shilnikov, A., Homoclinic chaos and its organization in a nonlinear optics model, Phys. Rev. E, 98, 040202 (2018) · doi:10.1103/PhysRevE.98.040202
[20] Pusuluri, K., Pikovsky, A., and Shilnikov, A., “Unraveling the chaos-land and its organization in the Rabinovich system,” in Advances in Dynamics, Patterns, Cognition (Springer, 2017), pp. 41-60.
[21] Pusuluri, K.; Meijer, H. G. E.; Shilnikov, A. L., Homoclinic puzzles and chaos in a nonlinear laser model, J. Commun. Nonlinear Sci. Numer. Simul., 93, 105503 (2020) · Zbl 1466.78019 · doi:10.1016/j.cnsns.2020.105503
[22] Pusuluri, K. and Shilnikov, A. L., “Symbolic representation of neuronal dynamics,” in Advances on Nonlinear Dynamics of Electronic Systems (World Scientific, 2019), pp. 97-102.
[23] Pusuluri, K., Ju, H., and Shilnikov, A. L., “Chaotic dynamics in neural systems,” in Encyclopedia of Complexity and Systems Science, edited by R. A. Meyers (Springer, 2020), pp. 1-13. · Zbl 06513237
[24] Pusuluri, K.
[25] Shilnikov, L. P., Bifurcation theory and turbulence. I, Methods Qual. Theory Differ. Equations, 150-163 (1986)
[26] Rössler, O. E., Different types of chaos in two simple differential equations, Z. Naturforsch., A, 31, 1664-1670 (1976) · doi:10.1515/zna-1976-1231
[27] Barrio, R.; Blesa, F.; Serrano, S., Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors, Physica D, 238, 1087-1100 (2009) · Zbl 1173.37049 · doi:10.1016/j.physd.2009.03.010
[28] Gaspard, P.; Kapral, R.; Nicolis, G., Bifurcation phenomena near homoclinic systems: A two-parameter analysis, J. Stat. Phys., 35, 697-727 (1984) · Zbl 0588.58055 · doi:10.1007/BF01010829
[29] Letellier, C.; Dutertre, P.; Maheu, B., Unstable periodic orbits and templates of the Rössler system: Toward a systematic topological characterization, Chaos, 5, 271-282 (1995) · doi:10.1063/1.166076
[30] Fraser, S.; Kapral, R., Analysis of flow hysteresis by a one-dimensional map, Phys. Rev. A, 25, 3223 (1982) · doi:10.1103/PhysRevA.25.3223
[31] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A.; Meijer, H. G. E.; Sautois, B., New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14, 147-175 (2008) · Zbl 1158.34302 · doi:10.1080/13873950701742754
[32] De Witte, V.; Govaerts, W.; Kuznetsov, Y. A.; Friedman, M., Interactive initialization and continuation of homoclinic and heteroclinic orbits in Matlab, ACM Trans. Math. Softw., 38, 18 (2012) · Zbl 1365.65274 · doi:10.1145/2168773.2168776
[33] Shilnikov, L. P., Shilnikov, A. L., Turaev, D. V., and Chua, L. O., Methods of Qualitative Theory in Nonlinear Dynamics. Parts I and II, World Scientific Series on Nonlinear Science, Series A Vol. 5 (World Scientific, 1998). · Zbl 0941.34001
[34] Afraimovich, V. S.; Gonchenko, S. V.; Lerman, L. M.; Shilnikov, A. L.; Turaev, D. V., Scientific heritage of L.P. Shilnikov, Regul. Chaotic Dyn., 19, 435-460 (2014) · Zbl 1353.37001 · doi:10.1134/S1560354714040017
[35] Shilnikov, L. P.; Shilnikov, A. L., Shilnikov bifurcation, Scholarpedia, 2, 1891 (2007) · doi:10.4249/scholarpedia.1891
[36] Gavrilov, N. K.; Shilnikov, L. P., On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. I, Math. USSR-Sb., 17, 467 (1972) · Zbl 0255.58006 · doi:10.1070/SM1972v017n04ABEH001597
[37] Gavrilov, N. K.; Shilnikov, L. P., On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II, Math. USSR-Sb., 19, 139 (1973) · Zbl 0273.58009 · doi:10.1070/SM1973v019n01ABEH001741
[38] Barrio, R.; Blesa, F.; Serrano, S.; Shilnikov, A. L., Global organization of spiral structures in biparametric space of dissipative systems with Shilnikov saddle-foci, Phys. Rev. E, 84, 035201 (2011) · doi:10.1103/PhysRevE.84.035201
[39] Bonatto, C.; Gallas, J. A., Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit, Phys. Rev. Lett., 101, 054101 (2008) · doi:10.1103/PhysRevLett.101.054101
[40] Gallas, J. A., The structure of infinite periodic and chaotic hub cascades in phase diagrams of simple autonomous flows, Int. J. Bifurcation Chaos, 20, 197-211 (2010) · Zbl 1188.34057 · doi:10.1142/S0218127410025636
[41] Vitolo, R.; Glendinning, P.; Gallas, J. A., Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows, Phys. Rev. E, 84, 5, 016216 (2011) · doi:10.1103/PhysRevE.84.016216
[42] Belyakov, L., Bifurcation set in a system with a homoclinic curve of a saddle, Math. Notes Acad. Sci. USSR, 28, 6, 910-916 (1980) · Zbl 0471.34032 · doi:10.1007/BF01709154
[43] Belyakov, L., Bifurcation of systems with a homoclinic curve of a saddle-focus with zero saddle value, Math. Notes Acad. Sci. USSR, 36, 5, 838-843 (1984) · Zbl 0598.34035 · doi:10.1007/BF01139930
[44] Belyakov, L., On one case of the birth of a periodic orbit with homoclinic curves, Math. Notes Acad. Sci. USSR, 15, 4, 571-580 (1974) · Zbl 0295.58010 · doi:10.1007/BF01095124
[45] Kuznetsov, Y. A.; De Feo, O.; Rinaldi, S., Belyakov homoclinic bifurcations in a tritrophic food chain model, SIAM J. Appl. Math., 62, 462-487 (2001) · Zbl 1015.34031 · doi:10.1137/S0036139900378542
[46] Bakhanova, Y. V.; Kazakov, A. O.; Korotkov, A. G.; Levanova, T. A.; Osipov, G. V., Spiral attractors as the root of a new type of ‘bursting activity’ in the Rosenzweig-MacArthur model, Eur. Phys. J. Spec. Top., 227, 959-970 (2018) · doi:10.1140/epjst/e2018-800025-6
[47] Kazakov, A. and Korotkov, A., “On spiral chaos of 3D flows,” in Proceedings of the International Conference—School Dynamics, Bifurcation and Chaos (Lobachevsky State University, 2018), pp. 15-16
[48] Gonchenko, A.; Gonchenko, S.; Shilnikov, L. P., Towards scenarios of chaos appearance in three-dimensional maps, Russ. J. Nonlinear Dyn., 8, 3-28 (2012) · doi:10.20537/nd1201001
[49] Gonchenko, A.; Gonchenko, S.; Kazakov, A.; Turaev, D., Simple scenarios of onset of chaos in three-dimensional maps, Int. J. Bifurcation Chaos, 24, 1440005 (2014) · Zbl 1300.37024 · doi:10.1142/S0218127414400057
[50] De Feo, O.; Maggio, G. M.; Kennedy, M. P., The Colpitts oscillator: Families of periodic solutions and their bifurcations, Int. J. Bifurcation Chaos Appl. Sci. Eng., 10, 935-958 (2000) · Zbl 1090.34540 · doi:10.1142/S0218127400000670
[51] Gonchenko, S. V.; Turaev, D. V.; Gaspard, P.; Nicolis, G., Complexity in the bifurcation structure of homoclinic loops to a saddle-focus, Nonlinearity, 10, 409 (1997) · Zbl 0905.34042 · doi:10.1088/0951-7715/10/2/006
[52] Xing, T., Pusuluri, K., and Shilnikov, A. L., “Ordered intricacy of homoclinics of the L. Shilnikov saddle-focus in symmetric systems,” J. Chaos (submitted) (2020).
[53] Medrano-T., R. O.; Baptista, M. S.; Caldas, I. L., Basic structures of the Shilnikov homoclinic bifurcation scenario, Chaos, 15, 033112 (2005) · Zbl 1144.37383 · doi:10.1063/1.2031978
[54] Gaspard, P., Generation of a countable set of homoclinic flows through bifurcation, Phys. Lett. A, 97, 1-4 (1983) · doi:10.1016/0375-9601(83)90085-3
[55] See https://bitbucket.org/pusuluri_krishna/deterministicchaosprospector/src/master/ for more information about “Deterministic chaos prospector.”
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.