×

Chaos in a discrete delay population model. (English) Zbl 1253.37085

Summary: We are concerned with chaos in a discrete delay population model. The map of the model is proved to be chaotic in the sense of both Devaney and Li-Yorke under some conditions, by employing the snap-back repeller theory. Some computer simulations are provided to visualize the theoretical result.

MSC:

37N25 Dynamical systems in biology
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
92D25 Population dynamics (general)
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic, Dordrecht, The Netherlands, 1992. · Zbl 0833.35144
[2] K. Gopalsamy and G. Ladas, “On the oscillation and asymptotic behavior of N\?(t)=N(t)[a+bN(t-\tau )-cN2(t-\tau )],” Quarterly of Applied Mathematics, vol. 48, no. 3, pp. 433-440, 1990. · Zbl 0719.34118
[3] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, NY, USA, 1993. · Zbl 0777.34002
[4] M. Jiang, Y. Shen, J. Jian, and X. Liao, “Stability, bifurcation and a new chaos in the logistic differential equation with delay,” Physics Letters A, vol. 350, no. 3-4, pp. 221-227, 2006. · Zbl 1195.34117 · doi:10.1016/j.physleta.2005.10.019
[5] L. Fan, Z. K. Shi, and S. Y. Tang, “Critical values of stability and Hopf bifurcations for a delayed population model with delay-dependent parameters,” Nonlinear Analysis, vol. 11, no. 1, pp. 341-355, 2010. · Zbl 1190.34106 · doi:10.1016/j.nonrwa.2008.11.016
[6] H. Seno, “A paradox in discrete single species population dynamics with harvesting/thinning,” Mathematical Biosciences, vol. 214, no. 1-2, pp. 63-69, 2008. · Zbl 1143.92032 · doi:10.1016/j.mbs.2008.06.004
[7] E. Liz and P. Pilarczyk, “Global dynamics in a stage-structured discrete-time population model with harvesting,” Journal of Theoretical Biology, vol. 297, pp. 148-165, 2012. · Zbl 1336.92071 · doi:10.1016/j.jtbi.2011.12.012
[8] I. W. Rodrigues, “Oscillation and attractivity in a discrete model with quadratic nonlinearity,” Applicable Analysis, vol. 47, no. 1, pp. 45-55, 1992. · Zbl 0788.39001 · doi:10.1080/00036819208840131
[9] L. H. Huang and M. S. Peng, “Qualitative analysis of a discrete population model,” Acta Mathematica Scientia B, vol. 19, no. 1, pp. 45-52, 1999. · Zbl 0930.39013
[10] Z. M. He and X. Lai, “Bifurcation and chaotic behavior of a discrete-time predator-prey system,” Nonlinear Analysis, vol. 12, no. 1, pp. 403-417, 2011. · Zbl 1202.93038 · doi:10.1016/j.nonrwa.2010.06.026
[11] M. S. Peng, “Multiple bifurcations and periodic “bubbling” in a delay population model,” Chaos, Solitons and Fractals, vol. 25, no. 5, pp. 1123-1130, 2005. · Zbl 1065.92035 · doi:10.1016/j.chaos.2004.11.087
[12] M. S. Peng and A. U\ccar, “The use of the Euler method in identification of multiple bifurcations and chaotic behavior in numerical approximation of delay-differential equations,” Chaos, Solitons and Fractals, vol. 21, no. 4, pp. 883-891, 2004. · Zbl 1054.65126 · doi:10.1016/j.chaos.2003.12.044
[13] M. S. Peng, “Symmetry breaking, bifurcations, periodicity and chaos in the Euler method for a class of delay differential equations,” Chaos, Solitons and Fractals, vol. 24, no. 5, pp. 1287-1297, 2005. · Zbl 1079.37011 · doi:10.1016/j.chaos.2004.09.049
[14] M. S. Peng and Y. Yuan, “Stability, symmetry-breaking bifurcations and chaos in discrete delayed models,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 18, no. 5, pp. 1477-1501, 2008. · Zbl 1147.39301 · doi:10.1142/S0218127408021117
[15] M. S. Peng, J. C. Yu, and X. J. Wang, “Complex dynamics in simple delayed two-parameterized models,” Nonlinear Analysis, vol. 13, no. 6, pp. 2530-2539, 2012. · Zbl 1276.37048 · doi:10.1016/j.nonrwa.2012.02.015
[16] D. J. Fan and J. J. Wei, “Bifurcation analysis of discrete survival red blood cells model,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, pp. 3358-3368, 2009. · Zbl 1221.37181 · doi:10.1016/j.cnsns.2009.01.015
[17] T. Y. Li and J. A. Yorke, “Period three implies chaos,” The American Mathematical Monthly, vol. 82, no. 10, pp. 985-992, 1975. · Zbl 0351.92021 · doi:10.2307/2318254
[18] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, “On Devaney’s definition of chaos,” The American Mathematical Monthly, vol. 99, no. 4, pp. 332-334, 1992. · Zbl 0758.58019 · doi:10.2307/2324899
[19] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, New York, NY, USA, 1987. · Zbl 1226.37030
[20] P. E. Kloeden and Z. Li, “Li-Yorke chaos in higher dimensions: a review,” Journal of Difference Equations and Applications, vol. 12, no. 3-4, pp. 247-269, 2006. · Zbl 1096.39019 · doi:10.1080/10236190600574069
[21] M. Martelli, M. Dang, and T. Seph, “Defining chaos,” Mathematics Magazine, vol. 71, no. 2, pp. 112-122, 1998. · Zbl 1008.37014 · doi:10.2307/2691012
[22] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos, CRC Press, Boca Raton, Fla, USA, 1995. · Zbl 0853.58001
[23] S. Wiggins, Global Bifurcations and Chaos, vol. 73, Springer, New York, NY, USA, 1988. · Zbl 0661.58001 · doi:10.1007/978-1-4612-1042-9
[24] W. Huang and X. D. Ye, “Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos,” Topology and its Applications, vol. 117, no. 3, pp. 259-272, 2002. · Zbl 0997.54061 · doi:10.1016/S0166-8641(01)00025-6
[25] Y. M. Shi and G. R. Chen, “Chaos of discrete dynamical systems in complete metric spaces,” Chaos, Solitons and Fractals, vol. 22, no. 3, pp. 555-571, 2004. · Zbl 1067.37047 · doi:10.1016/j.chaos.2004.02.015
[26] F. R. Marotto, “Snap-back repellers imply chaos in \Bbb Rn,” Journal of Mathematical Analysis and Applications, vol. 63, no. 1, pp. 199-223, 1978. · Zbl 0381.58004 · doi:10.1016/0022-247X(78)90115-4
[27] W. Rudin, Functional Analysis, McGraw-Hill, New York, NY, USA, 1973. · Zbl 0253.46001
[28] Y. M. Shi and G. R. Chen, “Discrete chaos in Banach spaces,” Science in China, vol. 48, no. 2, pp. 222-238, 2005, Chinese version, vol. 34, pp. 595-609, 2004. · Zbl 1170.37306 · doi:10.1360/03ys0183
[29] Y. M. Shi and P. Yu, “Chaos induced by regular snap-back repellers,” Journal of Mathematical Analysis and Applications, vol. 337, no. 2, pp. 1480-1494, 2008. · Zbl 1131.37023 · doi:10.1016/j.jmaa.2007.05.005
[30] Y. M. Shi and P. Yu, “Study on chaos induced by turbulent maps in noncompact sets,” Chaos, Solitons and Fractals, vol. 28, no. 5, pp. 1165-1180, 2006. · Zbl 1106.37008 · doi:10.1016/j.chaos.2005.08.162
[31] Y. M. Shi, P. Yu, and G. R. Chen, “Chaotification of discrete dynamical systems in banach spaces,” International Journal of Bifurcation and Chaos, vol. 16, no. 9, pp. 2615-2636, 2006. · Zbl 1185.37084 · doi:10.1142/S021812740601629X
[32] Y. Huang and X. F. Zou, “Co-existence of chaos and stable periodic orbits in a simple discrete neural network,” Journal of Nonlinear Science, vol. 15, no. 5, pp. 291-303, 2005. · Zbl 1098.37069 · doi:10.1007/s00332-005-0647-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.