Koundal, Reena; Kumar, Rakesh; Kumar, Ravinder; Srivastava, K.; Baleanu, D. A novel collocated-shifted Lucas polynomial approach for fractional integro-differential equations. (English) Zbl 1485.65132 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 167, 19 p. (2021). MSC: 65R20 65L60 65L03 34K37 45J05 PDF BibTeX XML Cite \textit{R. Koundal} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 167, 19 p. (2021; Zbl 1485.65132) Full Text: DOI OpenURL
Dönmez Demir, Duygu; Lukonde, Alpha Peter; Kürkçü, Ömür Kıvanç; Sezer, Mehmet Pell-Lucas series approach for a class of Fredholm-type delay integro-differential equations with variable delays. (English) Zbl 07372205 Math. Sci., Springer 15, No. 1, 55-64 (2021). MSC: 65L60 45B05 45J05 PDF BibTeX XML Cite \textit{D. Dönmez Demir} et al., Math. Sci., Springer 15, No. 1, 55--64 (2021; Zbl 07372205) Full Text: DOI OpenURL
Jalilian, R.; Tahernezhad, T. Exponential spline method for approximation solution of Fredholm integro-differential equation. (English) Zbl 07475922 Int. J. Comput. Math. 97, No. 4, 791-801 (2020). MSC: 65-XX 41A15 65Rxx 65D07 PDF BibTeX XML Cite \textit{R. Jalilian} and \textit{T. Tahernezhad}, Int. J. Comput. Math. 97, No. 4, 791--801 (2020; Zbl 07475922) Full Text: DOI OpenURL
Tahernezhad, Taherh; Jalilian, Reza Exponential spline for the numerical solutions of linear Fredholm integro-differential equations. (English) Zbl 1482.65243 Adv. Difference Equ. 2020, Paper No. 141, 15 p. (2020). MSC: 65R20 45B05 45J05 PDF BibTeX XML Cite \textit{T. Tahernezhad} and \textit{R. Jalilian}, Adv. Difference Equ. 2020, Paper No. 141, 15 p. (2020; Zbl 1482.65243) Full Text: DOI OpenURL
Didgar, Mohsen; Vahidi, Alireza Approximate solution of linear Volterra-Fredholm integral equations and systems of Volterra-Fredholm integral equations using Taylor expansion method. (English) Zbl 1473.65356 Iran. J. Math. Sci. Inform. 15, No. 2, 31-50 (2020). MSC: 65R20 45A05 45B05 45D05 PDF BibTeX XML Cite \textit{M. Didgar} and \textit{A. Vahidi}, Iran. J. Math. Sci. Inform. 15, No. 2, 31--50 (2020; Zbl 1473.65356) Full Text: Link OpenURL
Mirzaee, Farshid; Samadyar, Nasrin Numerical solution of two dimensional stochastic Volterra-Fredholm integral equations via operational matrix method based on hat functions. (English) Zbl 1463.65430 S\(\vec{\text{e}}\)MA J. 77, No. 3, 227-241 (2020). MSC: 65R20 45B05 45D05 45R05 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{N. Samadyar}, S\(\vec{\text{e}}\)MA J. 77, No. 3, 227--241 (2020; Zbl 1463.65430) Full Text: DOI OpenURL
Erfanian, Majid; Mansoori, Amin Solving the nonlinear integro-differential equation in complex plane with rationalized Haar wavelet. (English) Zbl 07316746 Math. Comput. Simul. 165, 223-237 (2019). MSC: 45Gxx 44Axx 45Dxx 65Rxx 45Jxx PDF BibTeX XML Cite \textit{M. Erfanian} and \textit{A. Mansoori}, Math. Comput. Simul. 165, 223--237 (2019; Zbl 07316746) Full Text: DOI OpenURL
Darani, Narges Mahmoodi; Maleknejad, Khosrow; Mesgarani, Hamid A new approach for two-dimensional nonlinear mixed Volterra-Fredholm integral equations and its convergence analysis. (English) Zbl 1420.65135 TWMS J. Pure Appl. Math. 10, No. 1, 132-139 (2019). MSC: 65R20 45B05 PDF BibTeX XML Cite \textit{N. M. Darani} et al., TWMS J. Pure Appl. Math. 10, No. 1, 132--139 (2019; Zbl 1420.65135) Full Text: Link OpenURL
Ninh, Khuat Van; Binh, Ngo Thanh Analytical solution of Volterra-Fredholm integral equations using hybrid of the method of contractive mapping and parameter continuation method. (English) Zbl 1421.45002 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 76, 20 p. (2019). MSC: 45G10 45B05 45D05 45L05 47J25 65R20 PDF BibTeX XML Cite \textit{K. Van Ninh} and \textit{N. T. Binh}, Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 76, 20 p. (2019; Zbl 1421.45002) Full Text: DOI OpenURL
Erfanian, Majid; Zeidabadi, Hamed Solving of nonlinear Fredholm integro-differential equation in a complex plane with rationalized Haar wavelet bases. (English) Zbl 07077349 Asian-Eur. J. Math. 12, No. 4, Article ID 1950055, 15 p. (2019). MSC: 47A56 45B05 47H10 42C40 PDF BibTeX XML Cite \textit{M. Erfanian} and \textit{H. Zeidabadi}, Asian-Eur. J. Math. 12, No. 4, Article ID 1950055, 15 p. (2019; Zbl 07077349) Full Text: DOI OpenURL
Fernane, Khaireddine Analytical solution of linear integro-differential equations with weakly singular kernel by using Taylor expansion method. (English) Zbl 1497.45010 J. Nonlinear Evol. Equ. Appl. 2018, 27-37 (2018). MSC: 45J05 45A05 45E10 45G10 65R20 PDF BibTeX XML Cite \textit{K. Fernane}, J. Nonlinear Evol. Equ. Appl. 2018, 27--37 (2018; Zbl 1497.45010) Full Text: Link OpenURL
Rohaninasab, N.; Maleknejad, K.; Ezzati, R. Numerical solution of high-order Volterra-Fredholm integro-differential equations by using Legendre collocation method. (English) Zbl 1427.65425 Appl. Math. Comput. 328, 171-188 (2018). MSC: 65R20 65L60 34K06 45J05 PDF BibTeX XML Cite \textit{N. Rohaninasab} et al., Appl. Math. Comput. 328, 171--188 (2018; Zbl 1427.65425) Full Text: DOI OpenURL
Mirzaee, Farshid Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials. (English) Zbl 1424.45010 Comput. Methods Differ. Equ. 5, No. 2, 88-102 (2017). MSC: 45G10 45D05 45B05 65D30 65M70 65R20 PDF BibTeX XML Cite \textit{F. Mirzaee}, Comput. Methods Differ. Equ. 5, No. 2, 88--102 (2017; Zbl 1424.45010) Full Text: Link OpenURL
Otadi, Mahmood; Mosleh, Maryam Universal approximation method for the solution of integral equations. (English) Zbl 1407.65328 Math. Sci., Springer 11, No. 3, 181-187 (2017). MSC: 65R20 68T05 45D05 45G10 PDF BibTeX XML Cite \textit{M. Otadi} and \textit{M. Mosleh}, Math. Sci., Springer 11, No. 3, 181--187 (2017; Zbl 1407.65328) Full Text: DOI OpenURL
Hesameddini, Esmail; Shahbazi, Mehdi Legendre collocation method and its convergence analysis for the numerical solutions of the conductor-like screening model for real solvents integral equation. (English) Zbl 1398.65354 Bull. Comput. Appl. Math. 5, No. 1, 33-51 (2017). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{E. Hesameddini} and \textit{M. Shahbazi}, Bull. Comput. Appl. Math. 5, No. 1, 33--51 (2017; Zbl 1398.65354) Full Text: Link OpenURL
Ghomanjani, Fateme; Farahi, M. H.; Pariz, N. A new approach for numerical solution of a linear system with distributed delays, Volterra delay-integro-differential equations, and nonlinear Volterra-Fredholm integral equation by Bézier curves. (A new approach for numerical solution of a linear system with distributed delays, Volterra delay-integro-differential equations, and nonlinear Volterra-Fredholm integral equation by Bezier curves.) (English) Zbl 1376.65155 Comput. Appl. Math. 36, No. 3, 1349-1365 (2017). MSC: 65R20 45J05 45B05 45D05 45F05 45G10 PDF BibTeX XML Cite \textit{F. Ghomanjani} et al., Comput. Appl. Math. 36, No. 3, 1349--1365 (2017; Zbl 1376.65155) Full Text: DOI OpenURL
Kürkçü, Ömür Kıvanç; Aslan, Ersin; Sezer, Mehmet A numerical method for solving some model problems arising in science and convergence analysis based on residual function. (English) Zbl 1372.65222 Appl. Numer. Math. 121, 134-148 (2017). MSC: 65L60 34A30 34A34 65R20 45A05 45G10 65L20 PDF BibTeX XML Cite \textit{Ö. K. Kürkçü} et al., Appl. Numer. Math. 121, 134--148 (2017; Zbl 1372.65222) Full Text: DOI OpenURL
Kashkaria, Bothayna S. H.; Syam, Muhammed I. Evolutionary computational intelligence in solving a class of nonlinear Volterra-Fredholm integro-differential equations. (English) Zbl 1416.65539 J. Comput. Appl. Math. 311, 314-323 (2017). MSC: 65R20 45J05 45B05 45D05 PDF BibTeX XML Cite \textit{B. S. H. Kashkaria} and \textit{M. I. Syam}, J. Comput. Appl. Math. 311, 314--323 (2017; Zbl 1416.65539) Full Text: DOI OpenURL
Hesameddini, Esmail; Shahbazi, Mehdi Solving system of Volterra-Fredholm integral equations with Bernstein polynomials and hybrid Bernstein Block-Pulse functions. (English) Zbl 1352.45007 J. Comput. Appl. Math. 315, 182-194 (2017). MSC: 45G10 65R20 68U20 65C20 PDF BibTeX XML Cite \textit{E. Hesameddini} and \textit{M. Shahbazi}, J. Comput. Appl. Math. 315, 182--194 (2017; Zbl 1352.45007) Full Text: DOI OpenURL
Mirzaee, Farshid; Hadadiyan, Elham Numerical solution of Volterra-Fredholm integral equations via modification of hat functions. (English) Zbl 1410.65501 Appl. Math. Comput. 280, 110-123 (2016). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{E. Hadadiyan}, Appl. Math. Comput. 280, 110--123 (2016; Zbl 1410.65501) Full Text: DOI OpenURL
Shiralashetti, S. C.; Mundewadi, R. A. Modified wavelet full-approximation scheme for the numerical solution of nonlinear Volterra integral and integro-differential equations. (English) Zbl 1380.65460 Appl. Math. Nonlinear Sci. 1, No. 2, 529-546 (2016). MSC: 65T60 65R20 45D05 PDF BibTeX XML Cite \textit{S. C. Shiralashetti} and \textit{R. A. Mundewadi}, Appl. Math. Nonlinear Sci. 1, No. 2, 529--546 (2016; Zbl 1380.65460) Full Text: DOI OpenURL
Guo, Mengwu; Zhong, Hongzhi Weak form quadrature solution of \(2m\)th-order Fredholm integro-differential equations. (English) Zbl 1356.65258 Int. J. Comput. Math. 93, No. 10, 1650-1664 (2016). MSC: 65R20 45A05 45G10 45J05 45B05 PDF BibTeX XML Cite \textit{M. Guo} and \textit{H. Zhong}, Int. J. Comput. Math. 93, No. 10, 1650--1664 (2016; Zbl 1356.65258) Full Text: DOI OpenURL
Bülbül, Berna; Sezer, Mehmet A numerical approach for solving generalized Abel-type nonlinear differential equations. (English) Zbl 1410.65244 Appl. Math. Comput. 262, 169-177 (2015). MSC: 65L05 PDF BibTeX XML Cite \textit{B. Bülbül} and \textit{M. Sezer}, Appl. Math. Comput. 262, 169--177 (2015; Zbl 1410.65244) Full Text: DOI OpenURL
Chen, Zhong; Jiang, Wei An efficient algorithm for solving nonlinear Volterra-Fredholm integral equations. (English) Zbl 1448.65278 Appl. Math. Comput. 259, 614-619 (2015). MSC: 65R20 45G10 45B05 45D05 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{W. Jiang}, Appl. Math. Comput. 259, 614--619 (2015; Zbl 1448.65278) Full Text: DOI OpenURL
Mosleh, Maryam; Otadi, Mahmood Least squares approximation method for the solution of Hammerstein-Volterra delay integral equations. (English) Zbl 1338.65290 Appl. Math. Comput. 258, 105-110 (2015). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{M. Mosleh} and \textit{M. Otadi}, Appl. Math. Comput. 258, 105--110 (2015; Zbl 1338.65290) Full Text: DOI OpenURL
Nemati, S. Numerical solution of Volterra-Fredholm integral equations using Legendre collocation method. (English) Zbl 1304.65275 J. Comput. Appl. Math. 278, 29-36 (2015). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{S. Nemati}, J. Comput. Appl. Math. 278, 29--36 (2015; Zbl 1304.65275) Full Text: DOI OpenURL
Wang, Keyan; Wang, Qisheng Taylor polynomial method and error estimation for a kind of mixed Volterra-Fredholm integral equations. (English) Zbl 1364.65298 Appl. Math. Comput. 229, 53-59 (2014). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{K. Wang} and \textit{Q. Wang}, Appl. Math. Comput. 229, 53--59 (2014; Zbl 1364.65298) Full Text: DOI OpenURL
Turkyilmazoglu, M. An effective approach for numerical solutions of high-order Fredholm integro-differential equations. (English) Zbl 1364.65154 Appl. Math. Comput. 227, 384-398 (2014). MSC: 65L60 45B05 45J05 PDF BibTeX XML Cite \textit{M. Turkyilmazoglu}, Appl. Math. Comput. 227, 384--398 (2014; Zbl 1364.65154) Full Text: DOI OpenURL
Turkyilmazoglu, M. High-order nonlinear Volterra-Fredholm-Hammerstein integro-differential equations and their effective computation. (English) Zbl 1338.45007 Appl. Math. Comput. 247, 410-416 (2014). MSC: 45G10 45J05 65R20 PDF BibTeX XML Cite \textit{M. Turkyilmazoglu}, Appl. Math. Comput. 247, 410--416 (2014; Zbl 1338.45007) Full Text: DOI OpenURL
Wang, Qisheng; Wang, Keyan; Chen, Shaojun Least squares approximation method for the solution of Volterra-Fredholm integral equations. (English) Zbl 1294.65116 J. Comput. Appl. Math. 272, 141-147 (2014). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{Q. Wang} et al., J. Comput. Appl. Math. 272, 141--147 (2014; Zbl 1294.65116) Full Text: DOI OpenURL
Bellour, Azzeddine; Bousselsal, Mahmoud Numerical solution of delay integro-differential equations by using Taylor collocation method. (English) Zbl 1291.45009 Math. Methods Appl. Sci. 37, No. 10, 1491-1506 (2014). MSC: 45J05 65R20 PDF BibTeX XML Cite \textit{A. Bellour} and \textit{M. Bousselsal}, Math. Methods Appl. Sci. 37, No. 10, 1491--1506 (2014; Zbl 1291.45009) Full Text: DOI OpenURL
Jafarian, A.; Measoomy Nia, S. Utilizing feed-back neural network approach for solving linear Fredholm integral equations system. (English) Zbl 1426.65214 Appl. Math. Modelling 37, No. 7, 5027-5038 (2013). MSC: 65R20 45A05 45B05 PDF BibTeX XML Cite \textit{A. Jafarian} and \textit{S. Measoomy Nia}, Appl. Math. Modelling 37, No. 7, 5027--5038 (2013; Zbl 1426.65214) Full Text: DOI OpenURL
Wang, Keyan; Wang, Qisheng; Guan, Kaizhong Iterative method and convergence analysis for a kind of mixed nonlinear Volterra-Fredholm integral equation. (English) Zbl 1334.65212 Appl. Math. Comput. 225, 631-637 (2013). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{K. Wang} et al., Appl. Math. Comput. 225, 631--637 (2013; Zbl 1334.65212) Full Text: DOI OpenURL
Jiang, Wei; Chen, Zhong Solving a system of linear Volterra integral equations using the new reproducing kernel method. (English) Zbl 1293.65170 Appl. Math. Comput. 219, No. 20, 10225-10230 (2013). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{W. Jiang} and \textit{Z. Chen}, Appl. Math. Comput. 219, No. 20, 10225--10230 (2013; Zbl 1293.65170) Full Text: DOI OpenURL
Yang, Li-Hong; Li, Hong-Ying; Wang, Jing-Ran Solving a system of linear Volterra integral equations using the modified reproducing kernel method. (English) Zbl 1291.65391 Abstr. Appl. Anal. 2013, Article ID 196308, 5 p. (2013). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{L.-H. Yang} et al., Abstr. Appl. Anal. 2013, Article ID 196308, 5 p. (2013; Zbl 1291.65391) Full Text: DOI OpenURL
Kurt, Ayşe; Yalçınbaş, Salih; Sezer, Mehmet Fibonacci collocation method for solving high-order linear Fredholm integro-differential-difference equations. (English) Zbl 1286.65184 Int. J. Math. Math. Sci. 2013, Article ID 486013, 9 p. (2013). MSC: 65R20 45J05 39A12 PDF BibTeX XML Cite \textit{A. Kurt} et al., Int. J. Math. Math. Sci. 2013, Article ID 486013, 9 p. (2013; Zbl 1286.65184) Full Text: DOI OpenURL
Laeli Dastjerdi, H.; Maalek Ghaini, F. M. Numerical solution of Volterra-Fredholm integral equations by moving least square method and Chebyshev polynomials. (English) Zbl 1252.65212 Appl. Math. Modelling 36, No. 7, 3283-3288 (2012). MSC: 65R20 45B05 45D05 41A50 PDF BibTeX XML Cite \textit{H. Laeli Dastjerdi} and \textit{F. M. Maalek Ghaini}, Appl. Math. Modelling 36, No. 7, 3283--3288 (2012; Zbl 1252.65212) Full Text: DOI OpenURL
Bervillier, C. Status of the differential transformation method. (English) Zbl 1246.65107 Appl. Math. Comput. 218, No. 20, 10158-10170 (2012). MSC: 65L05 PDF BibTeX XML Cite \textit{C. Bervillier}, Appl. Math. Comput. 218, No. 20, 10158--10170 (2012; Zbl 1246.65107) Full Text: DOI arXiv OpenURL
El-Ameen, M. A.; El-Kady, M. A new direct method for solving nonlinear Volterra-Fredholm-Hammerstein integral equations via optimal control problem. (English) Zbl 1244.65239 J. Appl. Math. 2012, Article ID 714973, 10 p. (2012). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{M. A. El-Ameen} and \textit{M. El-Kady}, J. Appl. Math. 2012, Article ID 714973, 10 p. (2012; Zbl 1244.65239) Full Text: DOI OpenURL
Parand, K.; Rad, J. A. Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. (English) Zbl 1244.65245 Appl. Math. Comput. 218, No. 9, 5292-5309 (2012). MSC: 65R20 45D05 45B05 45G10 PDF BibTeX XML Cite \textit{K. Parand} and \textit{J. A. Rad}, Appl. Math. Comput. 218, No. 9, 5292--5309 (2012; Zbl 1244.65245) Full Text: DOI OpenURL
Rashidinia, Jalil; Tahmasebi, Ali Systems of nonlinear Volterra integro-differential equations. (English) Zbl 1239.65082 Numer. Algorithms 59, No. 2, 197-212 (2012). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45G15 45D05 PDF BibTeX XML Cite \textit{J. Rashidinia} and \textit{A. Tahmasebi}, Numer. Algorithms 59, No. 2, 197--212 (2012; Zbl 1239.65082) Full Text: DOI OpenURL
Huang, Li; Li, Xian-Fang; Zhao, Yulin; Duan, Xiang-Yang Approximate solution of fractional integro-differential equations by Taylor expansion method. (English) Zbl 1228.65133 Comput. Math. Appl. 62, No. 3, 1127-1134 (2011). MSC: 65L99 34A08 45K05 26A33 PDF BibTeX XML Cite \textit{L. Huang} et al., Comput. Math. Appl. 62, No. 3, 1127--1134 (2011; Zbl 1228.65133) Full Text: DOI OpenURL
Akgönüllü, Nilay; Şahin, Niyazi; Sezer, Mehmet A Hermite collocation method for the approximate solutions of high-order linear Fredholm integro-differential equations. (English) Zbl 1228.65240 Numer. Methods Partial Differ. Equations 27, No. 6, 1707-1721 (2011). MSC: 65R20 45B05 45J05 PDF BibTeX XML Cite \textit{N. Akgönüllü} et al., Numer. Methods Partial Differ. Equations 27, No. 6, 1707--1721 (2011; Zbl 1228.65240) Full Text: DOI OpenURL
Maleknejad, K.; Attary, M. An efficient numerical approximation for the linear class of Fredholm integro-differential equations based on Cattani’s method. (English) Zbl 1221.65332 Commun. Nonlinear Sci. Numer. Simul. 16, No. 7, 2672-2679 (2011). MSC: 65R20 45D05 45J05 65T60 PDF BibTeX XML Cite \textit{K. Maleknejad} and \textit{M. Attary}, Commun. Nonlinear Sci. Numer. Simul. 16, No. 7, 2672--2679 (2011; Zbl 1221.65332) Full Text: DOI OpenURL
Marzban, H. R.; Tabrizidooz, H. R.; Razzaghi, M. A composite collocation method for the nonlinear mixed Volterra-Fredholm-Hammerstein integral equations. (English) Zbl 1221.65340 Commun. Nonlinear Sci. Numer. Simul. 16, No. 3, 1186-1194 (2011). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{H. R. Marzban} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 3, 1186--1194 (2011; Zbl 1221.65340) Full Text: DOI OpenURL
Hadizadeh, M.; Yazdani, S. New enclosure algorithms for the verified solutions of nonlinear Volterra integral equations. (English) Zbl 1219.65047 Appl. Math. Modelling 35, No. 6, 2972-2980 (2011). MSC: 65G20 45D05 65R20 PDF BibTeX XML Cite \textit{M. Hadizadeh} and \textit{S. Yazdani}, Appl. Math. Modelling 35, No. 6, 2972--2980 (2011; Zbl 1219.65047) Full Text: DOI OpenURL
Bülbül, Berna; Sezer, Mehmet Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients. (English) Zbl 1211.65131 Int. J. Comput. Math. 88, No. 3, 533-544 (2011). MSC: 65M70 35L15 65L15 35C10 PDF BibTeX XML Cite \textit{B. Bülbül} and \textit{M. Sezer}, Int. J. Comput. Math. 88, No. 3, 533--544 (2011; Zbl 1211.65131) Full Text: DOI OpenURL
Ben Zitoun, Feyed; Cherruault, Yves A method for solving nonlinear differential equations. (English) Zbl 1325.65181 Kybernetes 39, No. 4, 578-597 (2010). MSC: 65R20 34A45 PDF BibTeX XML Cite \textit{F. Ben Zitoun} and \textit{Y. Cherruault}, Kybernetes 39, No. 4, 578--597 (2010; Zbl 1325.65181) Full Text: DOI OpenURL
Sorkun, Hüseyin Hilmi; Yalçinbaş, Salih Approximate solutions of linear Volterra integral equation systems with variable coefficients. (English) Zbl 1201.45001 Appl. Math. Modelling 34, No. 11, 3451-3464 (2010). MSC: 45D05 65R20 PDF BibTeX XML Cite \textit{H. H. Sorkun} and \textit{S. Yalçinbaş}, Appl. Math. Modelling 34, No. 11, 3451--3464 (2010; Zbl 1201.45001) Full Text: DOI OpenURL
Bildik, Necdet; Konuralp, Ali; Yalçınbaş, Salih Comparison of Legendre polynomial approximation and variational iteration method for the solutions of general linear Fredholm integro-differential equations. (English) Zbl 1189.65307 Comput. Math. Appl. 59, No. 6, 1909-1917 (2010). MSC: 65R20 45J05 PDF BibTeX XML Cite \textit{N. Bildik} et al., Comput. Math. Appl. 59, No. 6, 1909--1917 (2010; Zbl 1189.65307) Full Text: DOI OpenURL
Karoui, Abderrazek; Jawahdou, Adel Existence and approximate \(L^p\) and continuous solutions of nonlinear integral equations of the Hammerstein and Volterra types. (English) Zbl 1196.45008 Appl. Math. Comput. 216, No. 7, 2077-2091 (2010). Reviewer: Alexander N. Tynda (Penza) MSC: 45G10 65R20 47H30 45D05 PDF BibTeX XML Cite \textit{A. Karoui} and \textit{A. Jawahdou}, Appl. Math. Comput. 216, No. 7, 2077--2091 (2010; Zbl 1196.45008) Full Text: DOI OpenURL
Ben Zitoun, Feyed; Cherruault, Yves A Taylor expansion approach using Faà di Bruno’s formula for solving nonlinear integral equations of the second and third kind. (English) Zbl 1198.65252 Kybernetes 38, No. 5, 800-818 (2009). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{F. Ben Zitoun} and \textit{Y. Cherruault}, Kybernetes 38, No. 5, 800--818 (2009; Zbl 1198.65252) Full Text: DOI OpenURL
Ghoreishi, F.; Hadizadeh, M. Numerical computation of the tau approximation for the Volterra-Hammerstein integral equations. (English) Zbl 1185.65234 Numer. Algorithms 52, No. 4, 541-559 (2009). Reviewer: Neville Ford (Chester) MSC: 65R20 45G05 PDF BibTeX XML Cite \textit{F. Ghoreishi} and \textit{M. Hadizadeh}, Numer. Algorithms 52, No. 4, 541--559 (2009; Zbl 1185.65234) Full Text: DOI OpenURL
Yalçinbaş, Salih; Sezer, Mehmet; Sorkun, Hüseyin Hilmi Legendre polynomial solutions of high-order linear Fredholm integro-differential equations. (English) Zbl 1162.65420 Appl. Math. Comput. 210, No. 2, 334-349 (2009). MSC: 65R20 PDF BibTeX XML Cite \textit{S. Yalçinbaş} et al., Appl. Math. Comput. 210, No. 2, 334--349 (2009; Zbl 1162.65420) Full Text: DOI OpenURL
Darania, P.; Ivaz, K. Numerical solution of nonlinear Volterra-Fredholm integro-differential equations. (English) Zbl 1165.65404 Comput. Math. Appl. 56, No. 9, 2197-2209 (2008). MSC: 65R20 45J05 PDF BibTeX XML Cite \textit{P. Darania} and \textit{K. Ivaz}, Comput. Math. Appl. 56, No. 9, 2197--2209 (2008; Zbl 1165.65404) Full Text: DOI OpenURL
Ordokhani, Y.; Razzaghi, M. Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized Haar functions. (English) Zbl 1133.65117 Appl. Math. Lett. 21, No. 1, 4-9 (2008). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{Y. Ordokhani} and \textit{M. Razzaghi}, Appl. Math. Lett. 21, No. 1, 4--9 (2008; Zbl 1133.65117) Full Text: DOI OpenURL
Bildik, Necdet; Inc, Mustafa Modified decomposition method for nonlinear Volterra-Fredholm integral equations. (English) Zbl 1152.45301 Chaos Solitons Fractals 33, No. 1, 308-313 (2007). MSC: 45D05 45B05 PDF BibTeX XML Cite \textit{N. Bildik} and \textit{M. Inc}, Chaos Solitons Fractals 33, No. 1, 308--313 (2007; Zbl 1152.45301) Full Text: DOI OpenURL
Darania, P.; Ebadian, Ali A method for the numerical solution of the integro-differential equations. (English) Zbl 1121.65127 Appl. Math. Comput. 188, No. 1, 657-668 (2007). Reviewer: Kai Diethelm (Braunschweig) MSC: 65R20 45J05 PDF BibTeX XML Cite \textit{P. Darania} and \textit{A. Ebadian}, Appl. Math. Comput. 188, No. 1, 657--668 (2007; Zbl 1121.65127) Full Text: DOI OpenURL
Ghasemi, M.; Tavassoli Kajani, M.; Babolian, E. Numerical solutions of the nonlinear Volterra-Fredholm integral equations by using homotopy perturbation method. (English) Zbl 1114.65367 Appl. Math. Comput. 188, No. 1, 446-449 (2007). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{M. Ghasemi} et al., Appl. Math. Comput. 188, No. 1, 446--449 (2007; Zbl 1114.65367) Full Text: DOI OpenURL
Yousefi, S.; Banifatemi, A. Numerical solution of Fredholm integral equations by using CAS wavelets. (English) Zbl 1109.65121 Appl. Math. Comput. 183, No. 1, 458-463 (2006). MSC: 65R20 45B05 65T60 PDF BibTeX XML Cite \textit{S. Yousefi} and \textit{A. Banifatemi}, Appl. Math. Comput. 183, No. 1, 458--463 (2006; Zbl 1109.65121) Full Text: DOI OpenURL
Cui, Minggen; Du, Hong Representation of exact solution for the nonlinear Volterra-Fredholm integral equations. (English) Zbl 1110.45005 Appl. Math. Comput. 182, No. 2, 1795-1802 (2006). Reviewer: Mouffak Benchohra (Sidi Bel Abbes) MSC: 45G10 65R20 PDF BibTeX XML Cite \textit{M. Cui} and \textit{H. Du}, Appl. Math. Comput. 182, No. 2, 1795--1802 (2006; Zbl 1110.45005) Full Text: DOI OpenURL
Belbas, S. A. On series solutions of Volterra equations. (English) Zbl 1108.65125 Appl. Math. Comput. 181, No. 2, 1287-1304 (2006). Reviewer: Josef Kofroň (Praha) MSC: 65R20 45G10 45D05 45G05 45E10 PDF BibTeX XML Cite \textit{S. A. Belbas}, Appl. Math. Comput. 181, No. 2, 1287--1304 (2006; Zbl 1108.65125) Full Text: DOI arXiv OpenURL
Ordokhani, Y. Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via rationalized Haar functions. (English) Zbl 1102.65141 Appl. Math. Comput. 180, No. 2, 436-443 (2006). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{Y. Ordokhani}, Appl. Math. Comput. 180, No. 2, 436--443 (2006; Zbl 1102.65141) Full Text: DOI OpenURL
Wang, Weiming Mechanical algorithm for solving the second kind of Volterra integral equation. (English) Zbl 1088.65121 Appl. Math. Comput. 173, No. 2, 1149-1162 (2006). MSC: 65R20 45D05 68W30 PDF BibTeX XML Cite \textit{W. Wang}, Appl. Math. Comput. 173, No. 2, 1149--1162 (2006; Zbl 1088.65121) Full Text: DOI OpenURL
Wang, Weiming A mechanical algorithm for solving the Volterra integral equation. (English) Zbl 1088.65120 Appl. Math. Comput. 172, No. 2, 1323-1341 (2006). MSC: 65R20 45D05 45G10 45J05 PDF BibTeX XML Cite \textit{W. Wang}, Appl. Math. Comput. 172, No. 2, 1323--1341 (2006; Zbl 1088.65120) Full Text: DOI OpenURL
Wang, Weiming; Li, Zhenqing A mechanical algorithm for solving ordinary differential equation. (English) Zbl 1088.65068 Appl. Math. Comput. 172, No. 1, 568-583 (2006). MSC: 65L05 34A30 68W30 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Z. Li}, Appl. Math. Comput. 172, No. 1, 568--583 (2006; Zbl 1088.65068) Full Text: DOI OpenURL
Wang, Weiming An algorithm for solving the high-order nonlinear Volterra-Fredholm integro-differential equation with mechanization. (English) Zbl 1088.65118 Appl. Math. Comput. 172, No. 1, 1-23 (2006). MSC: 65R20 45J05 45G10 PDF BibTeX XML Cite \textit{W. Wang}, Appl. Math. Comput. 172, No. 1, 1--23 (2006; Zbl 1088.65118) Full Text: DOI OpenURL
Yousefi, S.; Razzaghi, M. Legendre wavelets method for the nonlinear Volterra—Fredholm integral equations. (English) Zbl 1205.65342 Math. Comput. Simul. 70, No. 1, 1-8 (2005). MSC: 65R20 65T60 45G10 PDF BibTeX XML Cite \textit{S. Yousefi} and \textit{M. Razzaghi}, Math. Comput. Simul. 70, No. 1, 1--8 (2005; Zbl 1205.65342) Full Text: DOI OpenURL
Mahmoudi, Y. Taylor polynomial solution of nonlinear Volterra – Fredholm integral equation. (English) Zbl 1075.65152 Int. J. Comput. Math. 82, No. 7, 881-887 (2005). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{Y. Mahmoudi}, Int. J. Comput. Math. 82, No. 7, 881--887 (2005; Zbl 1075.65152) Full Text: DOI OpenURL
Sepehrian, B.; Razzaghi, M. Single-term Walsh series method for the Volterra integro-differential equations. (English) Zbl 1081.65551 Eng. Anal. Bound. Elem. 28, No. 11, 1315-1319 (2004). MSC: 65R20 45J05 45G10 PDF BibTeX XML Cite \textit{B. Sepehrian} and \textit{M. Razzaghi}, Eng. Anal. Bound. Elem. 28, No. 11, 1315--1319 (2004; Zbl 1081.65551) Full Text: DOI OpenURL
Hadizadeh, Mahmoud; Azizi, Ronak A reliable computational approach for approximate solution of Hammerstein integral equations of mixed type. (English) Zbl 1059.65124 Int. J. Comput. Math. 81, No. 7, 889-900 (2004). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{M. Hadizadeh} and \textit{R. Azizi}, Int. J. Comput. Math. 81, No. 7, 889--900 (2004; Zbl 1059.65124) Full Text: DOI OpenURL
Maleknejad, K.; Mahmoudi, Y. Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations. (English) Zbl 1032.65144 Appl. Math. Comput. 145, No. 2-3, 641-653 (2003). MSC: 65R20 45J05 45G10 PDF BibTeX XML Cite \textit{K. Maleknejad} and \textit{Y. Mahmoudi}, Appl. Math. Comput. 145, No. 2--3, 641--653 (2003; Zbl 1032.65144) Full Text: DOI OpenURL