×

A sequential partly iterative approach for multicomponent reactive transport with \(\text{CORE}^{2 \text D}\). (English) Zbl 1338.76066

Summary: \(\text{CORE}^{2 \text D}\) V4 is a finite element code for modeling partly or fully saturated water flow, heat transport, and multicomponent reactive solute transport under both local chemical equilibrium and kinetic conditions. It can handle coupled microbial processes and geochemical reactions such as acid-base, aqueous complexation, redox, mineral dissolution/precipitation, gas dissolution/exsolution, ion exchange, sorption via linear and nonlinear isotherms, and sorption via surface complexation. Hydraulic parameters may change due to mineral precipitation/dissolution reactions. Coupled transport and chemical equations are solved by using sequential iterative approaches. A sequential partly iterative approach (SPIA) is presented which improves the accuracy of the traditional sequential non-iterative approach (SNIA) and is more efficient than the general sequential iterative approach (SIA). While SNIA leads to a substantial saving of computing time, it introduces numerical errors which are especially large for cation exchange reactions. SPIA improves the efficiency of SIA because the iteration between transport and chemical equations is only performed in nodes with a large mass transfer between solid and liquid phases. The efficiency and accuracy of SPIA are compared to those of SIA and SNIA using synthetic examples and a case study of reactive transport through the Llobregat Delta aquitard in Spain. SPIA is found to be as accurate as SIA while requiring significantly less CPU time. In addition, SPIA is much more accurate than SNIA with only a minor increase in computing time. A further enhancement of the efficiency of SPIA is achieved by improving the efficiency of the Newton-Raphson method used for solving chemical equations. Such an improvement is obtained by working with increments of log concentrations and ignoring the terms of the Jacobian matrix containing derivatives of activity coefficients. A proof is given for the symmetry and non-singularity of the Jacobian matrix. Numerical analyses performed with synthetic examples confirm that these modifications improve the efficiency and convergence of the iterative algorithm.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76V05 Reaction effects in flows
86A05 Hydrology, hydrography, oceanography
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution. Balkema, Rotterdam (1993)
[2] Appelo, C.A.J.: Cation and proton exchange, pH variations and carbonate reactions in a freshening aquifer. Water Resour. Res. 30(10), 2793–2805 (1994) · doi:10.1029/94WR01048
[3] Atkinson, K.: An Introduction to Numerical Analysis. Wiley, New Jersey, 573 pp (1989) · Zbl 0718.65001
[4] Ayora, C., Taberner, C., Saaltink, M.W., Carrera, J.: The genesis of dedolomites: a discussion based on reactive transport modeling. J. Hydrol. 209, 346–365 (1998) · doi:10.1016/S0022-1694(98)00095-X
[5] Cederberg, G.A., Street, R., Leckie, J.O.: A groundwater mass transport and equilibrium chemistry model for multicomponent systems. Water Resour. Res. 21(8), 1095–1104 (1985) · doi:10.1029/WR021i008p01095
[6] Chilakapati, A., Yabusaki, S., Szecsody, J., MacEvoy, W.: Groundwater flow, multicomponent transport and biogeochemistry: development and application of a coupled process model. J. Contam. Hydrol. 43(3–4), 303–325 (2000) · doi:10.1016/S0169-7722(99)00107-2
[7] Dai, Z., Samper, J.: Inverse problem of multicomponent reactive chemical transport in porous media: formulation and applications. Water Resour. Res. 40, W07407 (2004). doi: 10.1029/2004WR003248 · doi:10.1029/2004WR003248
[8] Dai, Z., Samper, J.: Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems. J. Hydrol. 327, 447–461 (2006). doi: 10.1016/j.jhydrol.2005.11.052 · doi:10.1016/j.jhydrol.2005.11.052
[9] Dai, Z., Samper, J., Ritzi, R.: Identifying geochemical processes by inverse modeling of multicomponent reactive transport in Aquia aquifer. Geosphere 4(4), 210–219 (2006) · doi:10.1130/GES00021.1
[10] Engesgaard, P.: Model for Biological Clogging in 3D, Brief User’s Manual and Guide. Department of Hydrodynamics and Water Resources, Danish Technology University (2000)
[11] Galíndez, J.M., Molinero, J., Samper, J., Yang, C.B.: Simulating concrete degradation processes by reactive transport models. J. Phys. IV France 136, 177–188 (2006) · doi:10.1051/jp4:2006136019
[12] Garboczi, E.J., Bentz, D.P.: Computer simulation of the diffusivity of cement-based materials. J. Mater. Sci. 27, 2083–2092 (1992) · doi:10.1007/BF01117921
[13] Ginn, T.R., Murphy, E.M., Chilakapati, A., Seeboonruang, U.: Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media. J. Contam. Hydrol. 48(1–2), 121–149 (2001) · doi:10.1016/S0169-7722(00)00168-6
[14] Herzer, J., Kinzelbach, W.: Coupling of transport and chemical processes in numerical transport models. Geoderma 44, 115–127 (1989) · doi:10.1016/0016-7061(89)90022-0
[15] Horn, R., Johnson, Ch.: Matrix Analysis. Cambridge University Press, Cambridge (1985) · Zbl 0576.15001
[16] Iribar, V., Carrera, J., Custodio, E., Medina, A.: Inverse modelling of seawater intrusion in the Llobregat delta deep aquifer. J. Hydrol. 198(1–4), 226-244 (1997) · doi:10.1016/S0022-1694(96)03290-8
[17] Kaluarachchi, J.J., Parker, J.C.: Modeling multicomponent organic chemical transport in three-fluid-phase porous media. J. Contam. Hydrol. 5(4), 349–374 (1990) · doi:10.1016/0169-7722(90)90025-C
[18] Kirkner, D.J., Jennings, A.A.,Theis, T.L.: Multisolute mass transport with chemical interaction kinetics. J. Hydrol. 76(1–2), 107–117 (1985) · doi:10.1016/0022-1694(85)90092-7
[19] Lensing, H.J., Vogt, M., Herrling, B.: Modeling of biologically mediated redox processes in the subsurface. J. Hydrol. 159(1–4), 125–143 (1994) · doi:10.1016/0022-1694(94)90252-6
[20] Lichtner, P.C.: Continuum formulation of multicomponent-multiphase reactive transport. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (Eds.) Reviews in Mineralogy. Reactive Transport in Porous Media. Mineralogical Society of America, Washington, DC. (1996)
[21] Liu, C.W., Narasimhan, T.N.: Redox-controlled multiple species reactive chemical transport, 2. Verification and application. Water Resour. Res. 25, 883–910 (1989) · doi:10.1029/WR025i005p00883
[22] Maher, K., Steefel, C.I., DePaolo, D.J., Viani, B.E.: The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments. Geochim. Cosmochim. Acta 70(2), 337–363 (2006) · doi:10.1016/j.gca.2005.09.001
[23] Manzano, M.: Génesis del agua intersticial del acuitardo del delta del Llobregat: origen de los solutos y transporte interactivo con el medio sólido, Ph.D. Dissertation, Universidad Politécnica de Cataluña, Barcelona, Spain. (in Spanish). (1993)
[24] Molinero, J., Samper, J.: Modeling of reactive solute transport in fracture zones of granitic bedrocks. J. Contam. Hydrol. 82, 293–318 (2006) · doi:10.1016/j.jconhyd.2005.10.008
[25] Molinero, J., Samper, J., Zhang, G., Yang, C.: Biogeochemical reactive transport model of the redox zone experiment of the Äspö hard rock laboratory in Sweden. Nucl. Technol. 148, 151–165 (2004)
[26] Nienhuis, P., Appelo, C.A.T., Willemsen, A.: Program PHREEQM: modified from PHREEQM for use in mixing cell flow tube (1991)
[27] Pruess, K., Garcia, J., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., Xu, T.: Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29(9–10), 1431–1444 (2004) · doi:10.1016/j.energy.2004.03.077
[28] Regnier, P., O’Kane, J.P., Steefel, C.I.,Vanderborght, J.P.: Modeling complex multi-component reactive-transport systems: towards a simulation environment based on the concept of a knowledge base. Appl. Math. Model. 26(9), 913–927 (2002) · Zbl 1015.92050 · doi:10.1016/S0307-904X(02)00047-1
[29] Richardson, I.G.: The nature of C-S-H in hardened cements. Cem. Concr. Res. 29, 1131–1147 (1999) · doi:10.1016/S0008-8846(99)00168-4
[30] Saaltink, M.W., Ayora, C., Stuyfzand, P.J.,Timmer, H.: Analysis of a deep well recharge experiment by calibrating a reactive transport model with field data. J. Contam. Hydrol. 65(1–2), 1–18 (2003) · doi:10.1016/S0169-7722(02)00236-X
[31] Saaltink, M.W., Carrera, J., Ayora, C.: A comparison of two approaches for reactive transport modelling. J. Geochem. Explor. 69–70, 97–101 (2000) · doi:10.1016/S0375-6742(00)00012-1
[32] Salvage, K.M.,Yeh, G.-T.: Development and application of a numerical model of kinetic and equilibrium microbiological and geochemical reactions (BIOKEMOD). J. Hydrol. 209(1–4), 27–52 (1998) · doi:10.1016/S0022-1694(98)00120-6
[33] Samper, J., Juncosa, R., Delgado, J., Montenegro, L.: CORE2D: a code for non-isothermal water flow and reactive solute transport. Users manual version 2. ENRESA Technical Publication 06/2000: 131 pp (2000)
[34] Samper, J., Yang, C., Montenegro, L.: CORE2D version 4: a code for non-isothermal water flow and reactive solute transport. Users Manual. University of La Coruña, Spain (2003)
[35] Samper, J., Yang, C.: Stochastic analysis of transport and multicomponent competitive monovalent cation exchange in aquifers. Geosphere 2, 102–112 (2006) · doi:10.1130/GES00030.1
[36] Samper, J., Zhang, G., Montenegro, L.: Coupled microbial and geochemical reactive transport models in porous media: formulation and application to synthetic and in situ experiments. J. Iberian Geol. 32(2), 215–231 (2006)
[37] Samper, J., Yang, C., Naves, A., Yllera, A., Hernández, A., Molinero, J., Soler, J.M., Hernán, P., Mayor, J.C., Astudillo, J.: A fully 3-D anisotropic model of DI-B in situ diffusion experiment in the Opalinus clay formation. Phys. Chem. Earth 31, 531–540 (2006)
[38] Samper, J., Yang, C.: An approximate analytical solution for multicomponent cation exchange reactive transport in groundwater. Trans. Porous Media 69, 67–88 (2007) · doi:10.1007/s11242-006-9065-4
[39] Samper, J., Zheng, L., Fernández, A.M., Montenegro, L.: Inverse modeling of multicomponent reactive transport through single and dual porosity media. J. Contam. Hydrol. 98(3–4), 115–127 (2008) · doi:10.1016/j.jconhyd.2008.03.008
[40] Samper, J., Zheng, L., Montenegro, L.: Inverse hydrochemical models of aqueous extract experiments. Phys. Chem. Earth 33(12–13), 1009–1018 (2008). doi: 10.1016/j.pce.2008.05.012
[41] Samper, J., Zheng, L., Montenegro, L., Fernández, A.M., Rivas, P.: Testing coupled thermo-hydro-chemical models of compacted bentonite after dismantling the FEBEX in situ test. Appl. Geochem. 23(5), 1186–1201 (2008). doi: 10.1016/j.apgeochem.2007.11.010 · doi:10.1016/j.apgeochem.2007.11.010
[42] Simunek, J., Suarez, D.: Two-dimensional transport model for variably saturated porous media withmajor ion chemistry. Water Resour. Res. 30(4), 1115–1133 (1994) · doi:10.1029/93WR03347
[43] Steefel, C.I.: 1DREACT, One Dimensional Reaction-Transport Model. User Manual and Programmer’s Guide. Pacific Northwest Laboratories, Batelle, Washington (1993)
[44] Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 240(3–4), 539–558 (2005) · doi:10.1016/j.epsl.2005.09.017
[45] Steefel, C.I., Lichtner, P.C.: Diffusion and reaction in rock matrix bordering a hyperalkaline fluid-filled fracture. Geochim. Cosmochim. Acta 58(17), 3595–3612 (1994) · doi:10.1016/0016-7037(94)90152-X
[46] Steefel, C.I., Lasaga, A.C.: A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with applications to reactive flow in single phase hydrothermal system. Am. J. Sci. 294, 529–592 (1994) · doi:10.2475/ajs.294.5.529
[47] Steefel, C.I., MacQuarrie, K.T.B. Approaches to modelling of reactive transport in porous media. In: Reactive Transport in Porous Media. Rev. Mineral. 34, 83–129 (1996) (Mineralogical Society of America)
[48] Steefel, C.I., Lichtner, P.C.: Multicomponent reactive transport in discrete fractures: II: infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site. J. Hydrol. 209(1–4), 200–224 (1998) · doi:10.1016/S0022-1694(98)00173-5
[49] Steefel, C.I., Van Cappellen, P.: A new kinetic approach to modeling water–rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta 54(10), 2657–2677 (1990) · doi:10.1016/0016-7037(90)90003-4
[50] Stumm, W., Morgan, J.J.: Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. Wiley, New York (1981)
[51] Tebes-Stevens, C.J., Valocchi, A., VanBriesen, J.M., Rittmann, B.E.: Multicomponent transport with coupled geochemical and microbiological reactions: model description and example simulations. J. Hydrol. 209(1–4), 8–26 (1998) · doi:10.1016/S0022-1694(98)00104-8
[52] Valocchi, A.J., Malmstead, M.: A note on the accuracy of operator splitting for advection-dispersion-reaction problems. Water Resour. Res. 28(5), 1471–1476 (1992) · doi:10.1029/92WR00423
[53] Xu, T.: Modeling non-isothermal multicomponent reactive solute transport through variably saturated porous media. Ph.D. Dissertation, University of La Coruña, La Coruña, Spain (1996)
[54] Xu, T., Samper, J., Ayora, C., Manzano, M., Custodio, E.: Modeling of non-isothermal multicomponent reactive transport in field scale porous media flow systems. J. Hydrol. 214, 144–164 (1999) · doi:10.1016/S0022-1694(98)00283-2
[55] Xu, T., White, S.P., Pruess, K., Brimhall, G.H.: Modeling of pyrite oxidation in saturated and unsaturated subsurface flow systems. Trans. Porous Media 39(1), 25–56 (2000) · doi:10.1023/A:1006518725360
[56] Walter, A.L., Frind, E.O., Blowes, D.W., Ptacek, C.J., Molson, J.W.: Modeling of multicomponent reactive transport in groundwater, 1. Model development and evaluation. Water Resour. Res. 30(11), 3137–3148 (1994) · doi:10.1029/94WR00955
[57] Wolery, T.J.: EQ3NR, A computer program for geochemical aqueous speciation-solubility calculations (version 7.0), Lawrence Livermore Laboratory (1992)
[58] Yabusaki, S.B., Steefel, C.I., Wood, B.D.: Multidimensional, multicomponent, subsurface reactive transport in nonuniform velocity fields: code verification using an advective reactive streamtube approach. J. Contam. Hydrol. 30(3–4), 299–331 (1998) · doi:10.1016/S0169-7722(97)00050-8
[59] Yang, C.: Conceptual and numerical coupled thermal-hydro-bio-geochemical models for three-dimensional porous and fractured media. PhD thesis, University of La Coruña, La Coruña, Spain (2006)
[60] Yang, C., Samper, J., Molinero, J., Bonilla, M.: Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radiactive waste repository. J. Contam. Hydrol. 93, 130–148 (2007) · doi:10.1016/j.jconhyd.2007.01.008
[61] Yang, C., Samper, J., Montenegro, L.: A coupled non-isothermal reactive transport model for long-term geochemical evolution of a HLW repository in clay. Environ. Geol. 53, 1627–1638 (2008) · doi:10.1007/s00254-007-0770-2
[62] Yang, C., Samper, J., Molinero, J.: Inverse microbial and geochemical reactive transport models in porous media. Phys. Chem. Earth 33(12–13), 1026–1034 (2008). doi: 10.1016/j.pce.2008.05.016
[63] Yang, C., Samper, J.: A subgrid scale stabilized finite element method to multicomponent reactive transport in porous media. Trans. Porous Media (2008). doi: 10.1007/s11242-008-9288-7
[64] Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments of hydrogeochemical transport models of reactive multichemical components. Water Resour. Res. 25(1), 93–108 (1989) · doi:10.1029/WR025i001p00093
[65] Yeh, G.T., Tripathi, V.S.: A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour. Res. 27(12), 3075–3094 (1991) · doi:10.1029/91WR02028
[66] Yeh, G.T.: Computational Subsurface Hydrology, Reactions, Transport and Fate of Chemicals and Microbes. Kluwer, The Netherlands (2000)
[67] Zhang, G.: Nonisothermal hydrobiogeochemical models in porous media. PhD dissertation, University of A Coruña, La Coruña, Spain (2001)
[68] Zhang, G., Samper, J., Montenegro, L.: Coupled thermo-hydro-bio-geochemical reactive transport model of the CERBERUS heating and radiation experiment in Boom clay. Appl. Geochem. 23, 932–949 (2008) · doi:10.1016/j.apgeochem.2007.09.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.