Yang, Zhen-Hang; Tian, Jing-Feng; Zhu, Ya-Ru A sharp lower bound for the complete elliptic integrals of the first kind. (English) Zbl 1455.33014 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 8, 16 p. (2021). Reviewer: István Mező (Nanjing) MSC: 33E05 26E60 40A99 41A21 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 8, 16 p. (2021; Zbl 1455.33014) Full Text: DOI OpenURL
Alzer, Horst; Kwong, Man Kam A chain of mean value inequalities. (English) Zbl 1499.26056 Appl. Anal. Discrete Math. 14, No. 2, 490-497 (2020). MSC: 26D07 26E60 PDF BibTeX XML Cite \textit{H. Alzer} and \textit{M. K. Kwong}, Appl. Anal. Discrete Math. 14, No. 2, 490--497 (2020; Zbl 1499.26056) Full Text: DOI OpenURL
Sándor, J.; Bhayo, B. A. On two new means of two arguments. III. (English) Zbl 1428.26066 Probl. Anal. Issues Anal. 7(25), No. 1, 116-133 (2018). MSC: 26E60 26D05 26D15 PDF BibTeX XML Cite \textit{J. Sándor} and \textit{B. A. Bhayo}, Probl. Anal. Issues Anal. 7(25), No. 1, 116--133 (2018; Zbl 1428.26066) Full Text: DOI arXiv MNR OpenURL
Ding, Qing; Zhao, Tiehong Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean. (English) Zbl 1360.26025 J. Inequal. Appl. 2017, Paper No. 102, 12 p. (2017). MSC: 26E60 PDF BibTeX XML Cite \textit{Q. Ding} and \textit{T. Zhao}, J. Inequal. Appl. 2017, Paper No. 102, 12 p. (2017; Zbl 1360.26025) Full Text: DOI OpenURL
Huang, Hua-Ying; Wang, Nan; Long, Bo-Yong Optimal bounds for Neuman-Sándor mean in terms of the geometric convex combination of two Seiffert means. (English) Zbl 1336.26051 J. Inequal. Appl. 2016, Paper No. 14, 11 p. (2016). MSC: 26E60 PDF BibTeX XML Cite \textit{H.-Y. Huang} et al., J. Inequal. Appl. 2016, Paper No. 14, 11 p. (2016; Zbl 1336.26051) Full Text: DOI OpenURL
Cui, Hao-Chuan; Wang, Nan; Long, Bo-Yong Optimal bounds for the Neuman-Sándor mean in terms of the convex combination of the first and second Seiffert means. (English) Zbl 1393.26032 Math. Probl. Eng. 2015, Article ID 489490, 6 p. (2015). MSC: 26E60 PDF BibTeX XML Cite \textit{H.-C. Cui} et al., Math. Probl. Eng. 2015, Article ID 489490, 6 p. (2015; Zbl 1393.26032) Full Text: DOI OpenURL
Yang, Zhen-Hang; Jiang, Yun-Liang; Song, Ying-Qing; Chu, Yu-Ming Sharp inequalities for trigonometric functions. (English) Zbl 1474.26058 Abstr. Appl. Anal. 2014, Article ID 601839, 18 p. (2014). MSC: 26D05 26E60 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., Abstr. Appl. Anal. 2014, Article ID 601839, 18 p. (2014; Zbl 1474.26058) Full Text: DOI OpenURL
Yang, Zhen-Hang; Song, Ying-Qing; Chu, Yu-Ming Sharp bounds for the arithmetic-geometric mean. (English) Zbl 1308.26058 J. Inequal. Appl. 2014, Paper No. 192, 13 p. (2014). MSC: 26E60 26D07 33E05 PDF BibTeX XML Cite \textit{Z.-H. Yang} et al., J. Inequal. Appl. 2014, Paper No. 192, 13 p. (2014; Zbl 1308.26058) Full Text: DOI OpenURL
Yang, Zhen-Hang Three families of two-parameter means constructed by trigonometric functions. (English) Zbl 1297.26071 J. Inequal. Appl. 2013, Paper No. 541, 27 p. (2013). MSC: 26E60 26D05 33B10 26A48 PDF BibTeX XML Cite \textit{Z.-H. Yang}, J. Inequal. Appl. 2013, Paper No. 541, 27 p. (2013; Zbl 1297.26071) Full Text: DOI OpenURL
Gasmi, Abdessalem; Raïssouli, Mustapha Generalized stabilizability for bivariate means. (English) Zbl 1282.26048 J. Inequal. Appl. 2013, Paper No. 233, 13 p. (2013). MSC: 26E60 PDF BibTeX XML Cite \textit{A. Gasmi} and \textit{M. Raïssouli}, J. Inequal. Appl. 2013, Paper No. 233, 13 p. (2013; Zbl 1282.26048) Full Text: DOI OpenURL
Yang, Zhen-Hang New sharp bounds for logarithmic mean and identric mean. (English) Zbl 1285.26054 J. Inequal. Appl. 2013, Paper No. 116, 17 p. (2013). MSC: 26E60 26D07 15A18 PDF BibTeX XML Cite \textit{Z.-H. Yang}, J. Inequal. Appl. 2013, Paper No. 116, 17 p. (2013; Zbl 1285.26054) Full Text: DOI OpenURL
Gong, Wei-Ming; Song, Ying-Qing; Wang, Miao-Kun; Chu, Yu-Ming A sharp double inequality between Seiffert, arithmetic, and geometric means. (English) Zbl 1246.26017 Abstr. Appl. Anal. 2012, Article ID 684834, 7 p. (2012). MSC: 26D15 PDF BibTeX XML Cite \textit{W.-M. Gong} et al., Abstr. Appl. Anal. 2012, Article ID 684834, 7 p. (2012; Zbl 1246.26017) Full Text: DOI OpenURL
Gao, Hongya; Guo, Jianling; Yu, Wanguo Sharp bounds for power mean in terms of generalized Heronian mean. (English) Zbl 1218.26022 Abstr. Appl. Anal. 2011, Article ID 679201, 9 p. (2011). MSC: 26D15 26E60 PDF BibTeX XML Cite \textit{H. Gao} et al., Abstr. Appl. Anal. 2011, Article ID 679201, 9 p. (2011; Zbl 1218.26022) Full Text: DOI OpenURL
Liu, Hong; Meng, Xiang-Ju The optimal convex combination bounds for Seiffert’s mean. (English) Zbl 1221.26037 J. Inequal. Appl. 2011, Article ID 686834, 9 p. (2011). Reviewer: Gheorghe Toader (Cluj-Napoca) MSC: 26E60 PDF BibTeX XML Cite \textit{H. Liu} and \textit{X.-J. Meng}, J. Inequal. Appl. 2011, Article ID 686834, 9 p. (2011; Zbl 1221.26037) Full Text: DOI EuDML OpenURL
Chu, Yu-Ming; Qiu, Ye-Fang; Wang, Miao-Kun; Wang, Gen-Di The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert’s mean. (English) Zbl 1209.26018 J. Inequal. Appl. 2010, Article ID 436457, 7 p. (2010). Reviewer: V. Lokesha (Bangalore) MSC: 26D07 26E60 PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., J. Inequal. Appl. 2010, Article ID 436457, 7 p. (2010; Zbl 1209.26018) Full Text: DOI EuDML OpenURL
Batir, Necdet; Cancan, Murat Sharp inequalities involving the constant \(e\) and the sequence \((1+1/n)^n\). (English) Zbl 1297.97018 Int. J. Math. Educ. Sci. Technol. 40, No. 8, 1101-1109 (2009). MSC: 97I20 97I30 26D07 26A09 PDF BibTeX XML Cite \textit{N. Batir} and \textit{M. Cancan}, Int. J. Math. Educ. Sci. Technol. 40, No. 8, 1101--1109 (2009; Zbl 1297.97018) Full Text: DOI OpenURL
Qi, Feng; Niu, Da-Wei; Guo, Bai-Ni Refinements, generalizations, and applications of Jordan’s inequality and related problems. (English) Zbl 1175.26048 J. Inequal. Appl. 2009, Article ID 271923, 52 p. (2009). MSC: 26D15 PDF BibTeX XML Cite \textit{F. Qi} et al., J. Inequal. Appl. 2009, Article ID 271923, 52 p. (2009; Zbl 1175.26048) Full Text: DOI EuDML OpenURL
Kazi, Haseeb; Neuman, Edward Inequalities and bounds for elliptic integrals. (English) Zbl 1120.33020 J. Approximation Theory 146, No. 2, 212-226 (2007). Reviewer: José L. Lopez (Pamplona) MSC: 33E05 41A17 PDF BibTeX XML Cite \textit{H. Kazi} and \textit{E. Neuman}, J. Approx. Theory 146, No. 2, 212--226 (2007; Zbl 1120.33020) Full Text: DOI OpenURL
Sándor, József; Toader, Gheorghe On some exponential means. II. (English) Zbl 1153.26317 Int. J. Math. Math. Sci. 2006, No. 13, Article ID 51937, 9 p. (2006). MSC: 26D20 26E60 PDF BibTeX XML Cite \textit{J. Sándor} and \textit{G. Toader}, Int. J. Math. Math. Sci. 2006, No. 13, Article ID 51937, 9 p. (2006; Zbl 1153.26317) Full Text: DOI EuDML OpenURL