Liu, Zihui; Ning, Zhen-Hu Stabilization of the critical semilinear Klein-Gordon equation in compact space. (English) Zbl 07565437 J. Geom. Anal. 32, No. 10, Paper No. 249, 21 p. (2022). MSC: 35L05 58J45 93D23 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{Z.-H. Ning}, J. Geom. Anal. 32, No. 10, Paper No. 249, 21 p. (2022; Zbl 07565437) Full Text: DOI OpenURL
Bezerra, Flank D. M.; Nascimento, Marcelo J. D. Smooth dynamics of semilinear thermoelastic systems with variable thermal coefficients. (English) Zbl 07547896 J. Differ. Equations 332, 50-82 (2022). MSC: 35B40 35B41 35K20 35L20 35L71 35Q79 37B55 74F05 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} and \textit{M. J. D. Nascimento}, J. Differ. Equations 332, 50--82 (2022; Zbl 07547896) Full Text: DOI OpenURL
Bezerra, Flank D. M.; Carvalho, Alexandre N.; Santos, Lucas A. Well-posedness for some third-order evolution differential equations: a semigroup approach. (English) Zbl 07538093 J. Evol. Equ. 22, No. 2, Paper No. 53, 18 p. (2022). MSC: 34G20 47D06 47D03 35K10 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., J. Evol. Equ. 22, No. 2, Paper No. 53, 18 p. (2022; Zbl 07538093) Full Text: DOI OpenURL
Li, Hao; Ning, Zhen-Hu; Yang, Fengyan Stabilization of the critical semilinear wave equation with Dirichlet-Neumann boundary condition on bounded domain. (English) Zbl 1475.35053 J. Math. Anal. Appl. 506, No. 1, Article ID 125610, 15 p. (2022). MSC: 35B40 35B33 35L20 35L71 PDF BibTeX XML Cite \textit{H. Li} et al., J. Math. Anal. Appl. 506, No. 1, Article ID 125610, 15 p. (2022; Zbl 1475.35053) Full Text: DOI OpenURL
Bonotto, Everaldo M.; Nascimento, Marcelo J. D.; Santiago, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. (English) Zbl 1475.35040 J. Math. Anal. Appl. 506, No. 2, Article ID 125670, 42 p. (2022). MSC: 35B40 35B41 35L53 PDF BibTeX XML Cite \textit{E. M. Bonotto} et al., J. Math. Anal. Appl. 506, No. 2, Article ID 125670, 42 p. (2022; Zbl 1475.35040) Full Text: DOI arXiv OpenURL
Ljung, Per; Målqvist, Axel; Persson, Anna A generalized finite element method for the strongly damped wave equation with rapidly varying data. (English) Zbl 07523502 ESAIM, Math. Model. Numer. Anal. 55, No. 4, 1375-1404 (2021). MSC: 65-XX 35K10 65M60 PDF BibTeX XML Cite \textit{P. Ljung} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 4, 1375--1404 (2021; Zbl 07523502) Full Text: DOI OpenURL
Wang, Yonghai; Hu, Minhui; Qin, Yuming Upper semicontinuity of pullback attractors for a nonautonomous damped wave equation. (English) Zbl 07509900 Bound. Value Probl. 2021, Paper No. 56, 19 p. (2021). MSC: 37L05 35B40 35B41 PDF BibTeX XML Cite \textit{Y. Wang} et al., Bound. Value Probl. 2021, Paper No. 56, 19 p. (2021; Zbl 07509900) Full Text: DOI OpenURL
Bezerra, Flank D. M.; Figueroa-López, Rodiak N.; Nascimento, Marcelo J. D. Fractional oscillon equations; solvability and connection with classical oscillon equations. (English) Zbl 1483.35024 Commun. Pure Appl. Anal. 20, No. 6, 2257-2277 (2021). MSC: 35B40 35B41 34A08 35L20 35L71 35R11 47D06 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., Commun. Pure Appl. Anal. 20, No. 6, 2257--2277 (2021; Zbl 1483.35024) Full Text: DOI arXiv OpenURL
Aouadi, Moncef Robustness of global attractors for extensible coupled suspension bridge equations with fractional damping. (English) Zbl 1477.35256 Appl. Math. Optim. 84, Suppl. 1, S403-S435 (2021). MSC: 35Q74 37L05 35B40 35B41 35B20 35A01 35A02 37G35 74H45 74K10 22E70 26A33 35R11 PDF BibTeX XML Cite \textit{M. Aouadi}, Appl. Math. Optim. 84, S403--S435 (2021; Zbl 1477.35256) Full Text: DOI OpenURL
Freitas, M. M.; Dos Santos, M. J.; Ramos, A. J. A.; Vinhote, M. S.; Santos, M. L. Quasi-stability and continuity of attractors for nonlinear system of wave equations. (English) Zbl 1470.35071 Nonauton. Dyn. Syst. 8, 27-45 (2021). MSC: 35B41 35L53 35L71 35R11 PDF BibTeX XML Cite \textit{M. M. Freitas} et al., Nonauton. Dyn. Syst. 8, 27--45 (2021; Zbl 1470.35071) Full Text: DOI OpenURL
Freitas, Mirelson M.; Ramos, Anderson J. A.; Santos, Mauro L. Existence and upper-semicontinuity of global attractors for binary mixtures solids with fractional damping. (English) Zbl 1469.35048 Appl. Math. Optim. 83, No. 3, 1353-1385 (2021). MSC: 35B41 35L53 35L71 35L90 35R11 37L30 PDF BibTeX XML Cite \textit{M. M. Freitas} et al., Appl. Math. Optim. 83, No. 3, 1353--1385 (2021; Zbl 1469.35048) Full Text: DOI OpenURL
Freitas, Mirelson M.; Ramos, Anderson J. A.; Özer, A.Ö.; Almeida Júnior, Dilberto da Silva Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier’s law. (English) Zbl 1459.35038 J. Differ. Equations 280, 891-927 (2021). MSC: 35B40 35B41 35R11 37L30 74A15 74F05 74F15 74K10 PDF BibTeX XML Cite \textit{M. M. Freitas} et al., J. Differ. Equations 280, 891--927 (2021; Zbl 1459.35038) Full Text: DOI OpenURL
Bezerra, Flank D. M.; Carvalho, Alexandre N.; Nascimento, Marcelo J. D. Fractional approximations of abstract semilinear parabolic problems. (English) Zbl 1452.35085 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4221-4255 (2020). MSC: 35K90 35K58 35B41 47D06 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4221--4255 (2020; Zbl 1452.35085) Full Text: DOI OpenURL
Shomberg, Joseph L. Regular global attractors for wave equations with degenerate memory. (English) Zbl 1451.37094 Ural Math. J. 5, No. 1, 59-82 (2019). MSC: 37L30 35L05 35B41 35Q74 PDF BibTeX XML Cite \textit{J. L. Shomberg}, Ural Math. J. 5, No. 1, 59--82 (2019; Zbl 1451.37094) Full Text: DOI arXiv MNR OpenURL
Bezerra, Flank D. M.; Carbone, Vera L.; Nascimento, Marcelo J. D.; Schiabel, Karina Regularity and upper semicontinuity of pullback attractors for a class of nonautonomous thermoelastic plate systems. (English) Zbl 1441.35059 Pac. J. Math. 301, No. 2, 395-419 (2019). Reviewer: Adina Chirila (Brasov) MSC: 35B41 35B65 37B55 74K20 74F05 47D06 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., Pac. J. Math. 301, No. 2, 395--419 (2019; Zbl 1441.35059) Full Text: DOI OpenURL
Aragão, Gleiciane S.; Bezerra, Flank D. M.; Da Silva, Cládio O. P. Dynamics of thermoelastic plate system with terms concentrated in the boundary. (English) Zbl 1435.35371 Differ. Equ. Appl. 11, No. 3, 379-407 (2019). Reviewer: Adina Chirila (Brasov) MSC: 35Q74 35B40 35B41 37L05 35A01 35A02 74K20 74F05 74B20 PDF BibTeX XML Cite \textit{G. S. Aragão} et al., Differ. Equ. Appl. 11, No. 3, 379--407 (2019; Zbl 1435.35371) Full Text: DOI OpenURL
Yang, Yanbing; Ahmed, Md Salik; Qin, Lanlan; Xu, Runzhang Global well-posedness of a class of fourth-order strongly damped nonlinear wave equations. (English) Zbl 1437.35454 Opusc. Math. 39, No. 2, 297-313 (2019). MSC: 35L35 35L76 35B44 PDF BibTeX XML Cite \textit{Y. Yang} et al., Opusc. Math. 39, No. 2, 297--313 (2019; Zbl 1437.35454) Full Text: DOI OpenURL
Shomberg, Joseph L. Well-posedness of semilinear strongly damped wave equations with fractional diffusion operators and \(C^0\) potentials on arbitrary bounded domains. (English) Zbl 1437.35503 Rocky Mt. J. Math. 49, No. 4, 1307-1334 (2019). MSC: 35L71 35L20 35R11 35Q74 74H40 PDF BibTeX XML Cite \textit{J. L. Shomberg}, Rocky Mt. J. Math. 49, No. 4, 1307--1334 (2019; Zbl 1437.35503) Full Text: DOI Euclid OpenURL
Shomberg, Joseph L. Global existence of weak solutions for strongly damped wave equations with nonlinear boundary conditions and balanced potentials. (English) Zbl 1414.35129 Bull. Aust. Math. Soc. 99, No. 3, 432-444 (2019). MSC: 35L71 35L20 35Q74 74H40 PDF BibTeX XML Cite \textit{J. L. Shomberg}, Bull. Aust. Math. Soc. 99, No. 3, 432--444 (2019; Zbl 1414.35129) Full Text: DOI arXiv OpenURL
Zhang, Fang-hong; Wang, Shan-lin; Wang, Li Robust exponential attractors for a class of non-autonomous semi-linear second-order evolution equation with memory and critical nonlinearity. (English) Zbl 1409.35176 Appl. Anal. 98, No. 6, 1052-1084 (2019). MSC: 35Q35 35A01 PDF BibTeX XML Cite \textit{F.-h. Zhang} et al., Appl. Anal. 98, No. 6, 1052--1084 (2019; Zbl 1409.35176) Full Text: DOI OpenURL
Bezerra, Flank D. M.; Carbone, Vera L.; Nascimento, Marcelo J. D.; Schiabel, Karina Pullback attractors for a class of non-autonomous thermoelastic plate systems. (English) Zbl 1475.37086 Discrete Contin. Dyn. Syst., Ser. B 23, No. 9, 3553-3571 (2018). MSC: 37L30 34D45 35B40 35B41 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., Discrete Contin. Dyn. Syst., Ser. B 23, No. 9, 3553--3571 (2018; Zbl 1475.37086) Full Text: DOI arXiv OpenURL
Shomberg, Joseph L. On the upper semicontinuity of global attractors for damped wave equations. (English) Zbl 1428.35051 AIMS Math. 2, No. 3, 557-561 (2017). MSC: 35B41 35L71 35Q74 35L20 PDF BibTeX XML Cite \textit{J. L. Shomberg}, AIMS Math. 2, No. 3, 557--561 (2017; Zbl 1428.35051) Full Text: DOI OpenURL
Cholewa, Jan W.; Quesada, Carlos; Rodríguez-Bernal, Aníbal Nonlinear evolution equations in scales of Banach spaces and applications to PDEs. (English) Zbl 1390.35174 J. Abstr. Differ. Equ. Appl. 8, No. 2, 1-69 (2017). MSC: 35K90 35B33 35K58 35K25 PDF BibTeX XML Cite \textit{J. W. Cholewa} et al., J. Abstr. Differ. Equ. Appl. 8, No. 2, 1--69 (2017; Zbl 1390.35174) Full Text: Link OpenURL
Wu, Mijing; Chai, Shugen; Li, Shengjia Energy decay rates for the elasticity system with structural damping in the Fourier space. (English) Zbl 1379.35032 J. Math. Anal. Appl. 452, No. 1, 361-377 (2017). MSC: 35B40 74B05 PDF BibTeX XML Cite \textit{M. Wu} et al., J. Math. Anal. Appl. 452, No. 1, 361--377 (2017; Zbl 1379.35032) Full Text: DOI OpenURL
Saanouni, Tarek Fourth-order damped wave equation with exponential growth nonlinearity. (English) Zbl 1379.35194 Ann. Henri Poincaré 18, No. 1, 345-374 (2017). MSC: 35L76 35L35 35B44 PDF BibTeX XML Cite \textit{T. Saanouni}, Ann. Henri Poincaré 18, No. 1, 345--374 (2017; Zbl 1379.35194) Full Text: DOI OpenURL
Bezerra, F. D. M.; Carvalho, A. N.; Cholewa, J. W.; Nascimento, M. J. D. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. (English) Zbl 1356.35141 J. Math. Anal. Appl. 450, No. 1, 377-405 (2017). MSC: 35L71 35R11 35B40 35B41 PDF BibTeX XML Cite \textit{F. D. M. Bezerra} et al., J. Math. Anal. Appl. 450, No. 1, 377--405 (2017; Zbl 1356.35141) Full Text: DOI OpenURL
Xiao, Wei Global existence and blowing up of solutions for some non-linear wave equations. (English) Zbl 1356.35132 Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 117-133 (2017). MSC: 35L53 35B44 35L71 PDF BibTeX XML Cite \textit{W. Xiao}, Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 117--133 (2017; Zbl 1356.35132) Full Text: DOI OpenURL
Feng, Na; Liu, Zhiming; Yang, Zhijian Longtime behavior of the semilinear wave equation with gentle dissipation. (English) Zbl 1362.35191 Discrete Contin. Dyn. Syst. 36, No. 11, 6557-6580 (2016). MSC: 35L71 35B41 35B33 35B40 35B65 37L30 35R11 PDF BibTeX XML Cite \textit{N. Feng} et al., Discrete Contin. Dyn. Syst. 36, No. 11, 6557--6580 (2016; Zbl 1362.35191) Full Text: DOI OpenURL
Yang, Zhijian; Ding, Pengyan; Li, Lei Longtime dynamics of the Kirchhoff equations with fractional damping and supercritical nonlinearity. (English) Zbl 1339.35050 J. Math. Anal. Appl. 442, No. 2, 485-510 (2016). MSC: 35B40 35L20 35L71 35B41 35R11 PDF BibTeX XML Cite \textit{Z. Yang} et al., J. Math. Anal. Appl. 442, No. 2, 485--510 (2016; Zbl 1339.35050) Full Text: DOI OpenURL
Carvalho, Alexandre N.; Cholewa, Jan W.; Nascimento, Marcelo J. D. On the continuation of solutions of non-autonomous semilinear parabolic problems. (English) Zbl 1342.35162 Proc. Edinb. Math. Soc., II. Ser. 59, No. 1, 17-55 (2016). Reviewer: Ti-Jun Xiao (Fudan) MSC: 35K90 35B60 35B33 PDF BibTeX XML Cite \textit{A. N. Carvalho} et al., Proc. Edinb. Math. Soc., II. Ser. 59, No. 1, 17--55 (2016; Zbl 1342.35162) Full Text: DOI OpenURL
Ikehata, Ryo; Charão, Ruy Coimbra; Da Luz, Cleverson Roberto Optimal decay rates for the system of elastic waves in \(\mathbb R^n\) with structural damping. (English) Zbl 1295.35093 J. Evol. Equ. 14, No. 1, 197-210 (2014). MSC: 35B40 35L52 35B45 35R11 74J05 PDF BibTeX XML Cite \textit{R. Ikehata} et al., J. Evol. Equ. 14, No. 1, 197--210 (2014; Zbl 1295.35093) Full Text: DOI OpenURL
Li, Xiaojun; Ren, Li Dynamics of non-autonomous parabolic problems with subcritical and critical nonlinearities. (English) Zbl 1304.35122 Bull. Sci. Math. 138, No. 4, 540-564 (2014). Reviewer: Jauber C. Oliveira (Florianopolis) MSC: 35B41 35K55 PDF BibTeX XML Cite \textit{X. Li} and \textit{L. Ren}, Bull. Sci. Math. 138, No. 4, 540--564 (2014; Zbl 1304.35122) Full Text: DOI OpenURL
Li, Ke; Yang, Zhijian Exponential attractors for the strongly damped wave equation. (English) Zbl 1329.37075 Appl. Math. Comput. 220, 155-165 (2013). MSC: 37L30 35B41 PDF BibTeX XML Cite \textit{K. Li} and \textit{Z. Yang}, Appl. Math. Comput. 220, 155--165 (2013; Zbl 1329.37075) Full Text: DOI OpenURL
Charão, Ruy Coimbra; da Luz, Cleverson Roberto; Ikehata, Ryo Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space. (English) Zbl 1306.35067 J. Math. Anal. Appl. 408, No. 1, 247-255 (2013). MSC: 35L15 35B40 35R11 PDF BibTeX XML Cite \textit{R. C. Charão} et al., J. Math. Anal. Appl. 408, No. 1, 247--255 (2013; Zbl 1306.35067) Full Text: DOI OpenURL
Cuevas, Claudio; Lizama, Carlos; Soto, Herme Asymptotic periodicity for strongly damped wave equations. (English) Zbl 1293.35175 Abstr. Appl. Anal. 2013, Article ID 308616, 14 p. (2013). MSC: 35L71 35B15 PDF BibTeX XML Cite \textit{C. Cuevas} et al., Abstr. Appl. Anal. 2013, Article ID 308616, 14 p. (2013; Zbl 1293.35175) Full Text: DOI OpenURL
Runzhang, Xu; Yanbing, Yang Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations. (English) Zbl 1275.35136 Q. Appl. Math. 71, No. 3, 401-415 (2013). MSC: 35L35 35A01 35L76 35B40 PDF BibTeX XML Cite \textit{X. Runzhang} and \textit{Y. Yanbing}, Q. Appl. Math. 71, No. 3, 401--415 (2013; Zbl 1275.35136) Full Text: DOI OpenURL
Luo, Hong; Li, Li-Mei; Ma, Tian Existence of solutions to strongly damped quasilinear wave equations. (English) Zbl 1348.35144 Adv. Difference Equ. 2012, Paper No. 139, 12 p. (2012). MSC: 35L72 35L20 35D30 35D35 PDF BibTeX XML Cite \textit{H. Luo} et al., Adv. Difference Equ. 2012, Paper No. 139, 12 p. (2012; Zbl 1348.35144) Full Text: DOI OpenURL
Sun, Chunyou; Yang, Lu; Duan, Jinqiao Asymptotic behavior for a semilinear second order evolution equation. (English) Zbl 1235.35046 Trans. Am. Math. Soc. 363, No. 11, 6085-6109 (2011). Reviewer: Jauber C. Oliveira (Florianopolis) MSC: 35B40 35B33 35B41 35B65 35L35 35L76 35B25 PDF BibTeX XML Cite \textit{C. Sun} et al., Trans. Am. Math. Soc. 363, No. 11, 6085--6109 (2011; Zbl 1235.35046) Full Text: DOI OpenURL
Caraballo, Tomás; Carvalho, Alexandre N.; Langa, José A.; Rivero, Felipe A non-autonomous strongly damped wave equation: existence and continuity of the pullback attractor. (English) Zbl 1213.35121 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 6, 2272-2283 (2011). MSC: 35B41 35L71 35L20 35B30 PDF BibTeX XML Cite \textit{T. Caraballo} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 6, 2272--2283 (2011; Zbl 1213.35121) Full Text: DOI Link OpenURL
Yang, Meihua; Sun, Chunyou Exponential attractors for the strongly damped wave equations. (English) Zbl 1188.37075 Nonlinear Anal., Real World Appl. 11, No. 2, 913-919 (2010). Reviewer: Bruno Scarpellini (Basel) MSC: 37L30 35B41 35L05 PDF BibTeX XML Cite \textit{M. Yang} and \textit{C. Sun}, Nonlinear Anal., Real World Appl. 11, No. 2, 913--919 (2010; Zbl 1188.37075) Full Text: DOI OpenURL
Sun, Chunyou Asymptotic regularity for some dissipative equations. (English) Zbl 1197.35072 J. Differ. Equations 248, No. 2, 342-362 (2010). Reviewer: Bixiang Wang (Socorro) MSC: 35B65 35B41 35K57 35L05 35B40 PDF BibTeX XML Cite \textit{C. Sun}, J. Differ. Equations 248, No. 2, 342--362 (2010; Zbl 1197.35072) Full Text: DOI OpenURL
Yang, Meihua; Sun, Chunyou Attractors for strongly damped wave equations. (English) Zbl 1167.35319 Nonlinear Anal., Real World Appl. 10, No. 2, 1097-1100 (2009). MSC: 35B41 35L75 37L30 PDF BibTeX XML Cite \textit{M. Yang} and \textit{C. Sun}, Nonlinear Anal., Real World Appl. 10, No. 2, 1097--1100 (2009; Zbl 1167.35319) Full Text: DOI OpenURL
Yang, Meihua; Sun, Chunyou Dynamics of strongly damped wave equations in locally uniform spaces: Attractors and asymptotic regularity. (English) Zbl 1159.37022 Trans. Am. Math. Soc. 361, No. 2, 1069-1101 (2009). Reviewer: Rodica Luca Tudorache (Iaşi) MSC: 37L05 35D05 35B40 35B41 PDF BibTeX XML Cite \textit{M. Yang} and \textit{C. Sun}, Trans. Am. Math. Soc. 361, No. 2, 1069--1101 (2009; Zbl 1159.37022) Full Text: DOI OpenURL
Carvalho, A. N.; Cholewa, J. W.; Dlotko, Tomasz Strongly damped wave problems: bootstrapping and regularity of solutions. (English) Zbl 1151.35056 J. Differ. Equations 244, No. 9, 2310-2333 (2008). Reviewer: Marie Kopáčková (Praha) MSC: 35L70 35B33 35B65 PDF BibTeX XML Cite \textit{A. N. Carvalho} et al., J. Differ. Equations 244, No. 9, 2310--2333 (2008; Zbl 1151.35056) Full Text: DOI OpenURL
Carvalho, A. N.; Cholewa, J. W. Regularity of solutions on the global attractor for a semilinear damped wave equation. (English) Zbl 1139.35026 J. Math. Anal. Appl. 337, No. 2, 932-948 (2008). Reviewer: Messoud A. Efendiev (Berlin) MSC: 35B41 35B25 35L70 35B60 PDF BibTeX XML Cite \textit{A. N. Carvalho} and \textit{J. W. Cholewa}, J. Math. Anal. Appl. 337, No. 2, 932--948 (2008; Zbl 1139.35026) Full Text: DOI OpenURL
Ikehata, Ryo; Inoue, Yu-ki Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain. (English) Zbl 1128.35073 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68, No. 1, 154-169 (2008). Reviewer: Marie Kopáčková (Praha) MSC: 35L70 35B40 35L20 PDF BibTeX XML Cite \textit{R. Ikehata} and \textit{Y.-k. Inoue}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68, No. 1, 154--169 (2008; Zbl 1128.35073) Full Text: DOI OpenURL
Bruschi, S. M.; Carvalho, A. N.; Cholewa, J. W.; Dłotko, Tomasz Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. (English) Zbl 1103.35020 J. Dyn. Differ. Equations 18, No. 3, 767-814 (2006). Reviewer: Christian Pötzsche (Neuherberg) MSC: 35B41 35B20 35B30 35B35 35B40 35L05 PDF BibTeX XML Cite \textit{S. M. Bruschi} et al., J. Dyn. Differ. Equations 18, No. 3, 767--814 (2006; Zbl 1103.35020) Full Text: DOI OpenURL
Gazzola, Filippo; Squassina, Marco Global solutions and finite time blow up for damped semilinear wave equations. (English) Zbl 1094.35082 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23, No. 2, 185-207 (2006). Reviewer: Marie Kopáčková (Praha) MSC: 35L75 35L20 35B40 35B35 PDF BibTeX XML Cite \textit{F. Gazzola} and \textit{M. Squassina}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23, No. 2, 185--207 (2006; Zbl 1094.35082) Full Text: DOI Numdam EuDML OpenURL
Carvalho, A. N.; Cholewa, J. W. Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities. (English) Zbl 1077.35031 J. Math. Anal. Appl. 310, No. 2, 557-578 (2005). Reviewer: Behzad Djafari-Rouhani (El-Paso) MSC: 35B41 35K90 35K55 35L30 35L70 PDF BibTeX XML Cite \textit{A. N. Carvalho} and \textit{J. W. Cholewa}, J. Math. Anal. Appl. 310, No. 2, 557--578 (2005; Zbl 1077.35031) Full Text: DOI OpenURL
Pata, Vittorino; Squassina, Marco On the strongly damped wave equation. (English) Zbl 1068.35077 Commun. Math. Phys. 253, No. 3, 511-533 (2005). Reviewer: Bruno Scarpellini (Basel) MSC: 35L75 37L30 35B41 PDF BibTeX XML Cite \textit{V. Pata} and \textit{M. Squassina}, Commun. Math. Phys. 253, No. 3, 511--533 (2005; Zbl 1068.35077) Full Text: DOI OpenURL
Zhou, Shengfan Attractors for strongly damped wave equations with critical exponent. (English) Zbl 1039.37071 Appl. Math. Lett. 16, No. 8, 1307-1314 (2003). MSC: 37L30 35B33 35B41 35L70 PDF BibTeX XML Cite \textit{S. Zhou}, Appl. Math. Lett. 16, No. 8, 1307--1314 (2003; Zbl 1039.37071) Full Text: DOI OpenURL
Varlamov, Vladimir Long-time asymptotic expansion for the damped semilinear wave equation. (English) Zbl 1106.35317 J. Math. Anal. Appl. 276, No. 2, 896-923 (2002). MSC: 35L70 35C10 35C20 PDF BibTeX XML Cite \textit{V. Varlamov}, J. Math. Anal. Appl. 276, No. 2, 896--923 (2002; Zbl 1106.35317) Full Text: DOI OpenURL