×

Error analysis for finite element methods for steady natural convection problems. (English) Zbl 0714.76090

Summary: We analyze the error in finite element methods in approximating, socalled, free or natural convection problems. We also include the effects of conducting solid walls in our analysis. Under a uniqueness condition on the Rayleigh and Prandtl numbers (which we derive), we give direct, quasioptimal error estimates for “div-stable” finite element spaces for the fluid variables and general conforming finite element spaces for the temperature. At larger Rayleigh numbers, we give analogous, asymptotic error estimates, basing this analysis upon local uniqueness properties of the true solution (\b{u},p,T), which we also establish.

MSC:

76R10 Free convection
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76M10 Finite element methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aubin J. P., Applied Functional Analysis (1979) · Zbl 0424.46001
[2] Boland, J., Ermentrout, G. B., Hall, C. A., Layton, W. and Melhem, H. 1988. Numerical and analytical studies of natural convection problems. Proc. Int. Conf. on Thy. and Apis, of Diff. Eqns. 1988. pp.83–90. · Zbl 0722.35067
[3] DOI: 10.1002/num.1690060202 · Zbl 0703.76071 · doi:10.1002/num.1690060202
[4] Boussinesq J., Theorie anlaytique de la chaleur
[5] Chandrasekhar S., Hydrodynamic and Hydromagnetic Stability (1961)
[6] Costabel, M. and Stephan, E. preprint
[7] Cuvelier, C. 1976. ”Peturbation, approximation et controle optimal d’un systeme gouverne par les equationes de Navier-Stokes couplees a celle de la chaleur”. Delft, The Netherlands: Delft University of Technology. thesis
[8] Cuvelier, C. ”Natural convection in an enclosed cavity”. 21–26. Jones and Thompson.
[9] Cuvelier C., Finite Element Methods and Navier Stokes Equations (1986) · Zbl 0649.65059 · doi:10.1007/978-94-010-9333-0
[10] DOI: 10.1002/fld.1650030305 · doi:10.1002/fld.1650030305
[11] DOI: 10.1137/0722044 · Zbl 0583.65038 · doi:10.1137/0722044
[12] DOI: 10.1007/BF01391412 · Zbl 0555.65034 · doi:10.1007/BF01391412
[13] DOI: 10.1016/0362-546X(87)90061-7 · Zbl 0646.76098 · doi:10.1016/0362-546X(87)90061-7
[14] DOI: 10.1002/cpa.3160300202 · Zbl 0335.35077 · doi:10.1002/cpa.3160300202
[15] Foias C., Ann. Scuola Norm. Sup. Pisa 5 pp 29– (1978)
[16] Fucik S., Solvability of Nonlinear Equations and Boundary Value Problems (1980) · Zbl 0453.47035
[17] Girault V., Finite Element Methods for Navier Stokes Equations (1986) · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[18] Gresho, P. M., Lee, M., Chan, S. T. and Sani, R. L. 1980. ”Solution of time dependent, incompressible Navier-Stokes and Boussinesq equations using the Galerkin finite element method”. Vol. 771, 203–222. Berlin: Springer. Springer Lecture Notes in Math. · Zbl 0428.76026
[19] Grisvard P., Num. Sol. of Partial Diff. Equa.-III, SYNSPADG 1975 (1975)
[20] Gunzburger M., Finite Element Methods for Viscous Incompressible Flows - A Guide to Theory, Practice and Algorithms (1989) · Zbl 0697.76031
[21] DOI: 10.1007/BF00276873 · Zbl 0609.76098 · doi:10.1007/BF00276873
[22] Jones, I. P. and Thompson, C. P. 1981. ”Numerical solutions for a comparison problem on natural convection in an enclosed cavity”. U.K. Atomic Energy Authority Harwell. Report AERE-R9955
[23] DOI: 10.1017/S0022112077001013 · doi:10.1017/S0022112077001013
[24] Melhem H., Inst. for Comp. Math. Appls. (1987)
[25] Peterson J., Num. Meth. for PDEs 4 pp 57– (1988) · Zbl 0657.76086 · doi:10.1002/num.1690040105
[26] Rabinowitz P. H., Arch. Rat. Mech. Anal. 20 pp 145, 25– (1967)
[27] DOI: 10.2307/2373250 · Zbl 0143.35301 · doi:10.2307/2373250
[28] Temam R., Navier Stokes Equations and Nonlinear Functional Analysis 41 (1983) · Zbl 0522.35002
[29] Temam, R. 1977. ”Navier Stokes Equations: Theory and Numerical Analysis”. North Holland, Amsterdam, New York · Zbl 0383.35057
[30] Temam R., Infinite Dimensional Dynamical Systems in Mechanics and Physics (1988) · Zbl 0662.35001 · doi:10.1007/978-1-4684-0313-8
[31] DOI: 10.1017/S0022112084001555 · doi:10.1017/S0022112084001555
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.