Zhang, Zhihua Frequency domain of weakly translation invariant frame MRAs. (English) Zbl 1496.42042 Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 4, Article ID 2150059, 12 p. (2022). Reviewer: Pierluigi Vellucci (Roma) MSC: 42C15 PDF BibTeX XML Cite \textit{Z. Zhang}, Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 4, Article ID 2150059, 12 p. (2022; Zbl 1496.42042) Full Text: DOI OpenURL
Murugan, S. Pitchai; Youvaraj, G. P. Frame multiresolution analysis of continuous piecewise linear functions. (English) Zbl 1491.42048 Int. J. Wavelets Multiresolut. Inf. Process. 19, No. 6, Article ID 2150032, 21 p. (2021). Reviewer: Patricia Mariela Morillas (San Luis) MSC: 42C40 42C15 41A05 94A12 PDF BibTeX XML Cite \textit{S. P. Murugan} and \textit{G. P. Youvaraj}, Int. J. Wavelets Multiresolut. Inf. Process. 19, No. 6, Article ID 2150032, 21 p. (2021; Zbl 1491.42048) Full Text: DOI OpenURL
Malhotra, Hari Krishan; Vashisht, Lalit Kumar Unitary extension principle for nonuniform wavelet frames in \(L^2(\mathbb{R} )\). (English) Zbl 1488.42161 J. Math. Phys. Anal. Geom. 17, No. 1, 79-94 (2021). MSC: 42C40 42C15 42C30 42C05 PDF BibTeX XML Cite \textit{H. K. Malhotra} and \textit{L. K. Vashisht}, J. Math. Phys. Anal. Geom. 17, No. 1, 79--94 (2021; Zbl 1488.42161) Full Text: arXiv Link OpenURL
Gómez-Cubillo, F.; Villullas, S. Univariate tight wavelet frames of minimal support. (English) Zbl 1460.42045 Banach J. Math. Anal. 15, No. 2, Paper No. 42, 55 p. (2021). MSC: 42C15 05C40 47B15 30J05 30H10 PDF BibTeX XML Cite \textit{F. Gómez-Cubillo} and \textit{S. Villullas}, Banach J. Math. Anal. 15, No. 2, Paper No. 42, 55 p. (2021; Zbl 1460.42045) Full Text: DOI arXiv OpenURL
Kumar, Raj; Satyapriya Construction of a frame multiresolution analysis on locally compact Abelian groups. (English) Zbl 1474.42123 Aust. J. Math. Anal. Appl. 18, No. 1, Article No. 5, 19 p. (2021). MSC: 42C15 42C40 22B05 PDF BibTeX XML Cite \textit{R. Kumar} and \textit{Satyapriya}, Aust. J. Math. Anal. Appl. 18, No. 1, Article No. 5, 19 p. (2021; Zbl 1474.42123) Full Text: Link OpenURL
Yu, Xiaojiang Multiscaling frame multiresolution analysis and associated wavelet frames. (English) Zbl 1446.42047 Int. J. Wavelets Multiresolut. Inf. Process. 18, No. 3, Article ID 2050009, 39 p. (2020). MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{X. Yu}, Int. J. Wavelets Multiresolut. Inf. Process. 18, No. 3, Article ID 2050009, 39 p. (2020; Zbl 1446.42047) Full Text: DOI OpenURL
San Antolín, A. On Parseval wavelet frames via multiresolution analyses in \(H_G^2\). (English) Zbl 1471.42077 Can. Math. Bull. 63, No. 1, 157-172 (2020). Reviewer: Azhar Y. Tantary (Srinagar) MSC: 42C40 42C15 PDF BibTeX XML Cite \textit{A. San Antolín}, Can. Math. Bull. 63, No. 1, 157--172 (2020; Zbl 1471.42077) Full Text: DOI arXiv OpenURL
Atreas, Nikolaos D.; Papadakis, Manos; Stavropoulos, Theodoros Extension principles for dual multiwavelet frames of \(L_2(\mathbb R^s)\) constructed from multirefinable generators. (English) Zbl 1348.42030 J. Fourier Anal. Appl. 22, No. 4, 854-877 (2016). Reviewer: Peter Massopust (München) MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{N. D. Atreas} et al., J. Fourier Anal. Appl. 22, No. 4, 854--877 (2016; Zbl 1348.42030) Full Text: DOI OpenURL
Shah, Firdous A.; Bhat, M. Younus Semi-orthogonal wavelet frames on local fields. (English) Zbl 1346.42050 Analysis, München 36, No. 3, 173-181 (2016). Reviewer: Devendra Kumar (Al-Baha) MSC: 42C40 42C15 43A70 11S85 PDF BibTeX XML Cite \textit{F. A. Shah} and \textit{M. Y. Bhat}, Analysis, München 36, No. 3, 173--181 (2016; Zbl 1346.42050) Full Text: DOI OpenURL
Lu, Dayong; Li, Dengfeng Construction of periodic wavelet frames with dilation matrix. (English) Zbl 1311.42084 Front. Math. China 9, No. 1, 111-134 (2014). Reviewer: Bin Han (Edmonton) MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{D. Lu} and \textit{D. Li}, Front. Math. China 9, No. 1, 111--134 (2014; Zbl 1311.42084) Full Text: DOI OpenURL
Gordillo, María Luisa Irregular multiresolution analysis and associated wavelet. (English) Zbl 1305.42036 Arab. J. Math. 3, No. 1, 23-37 (2014). Reviewer: Richard A. Zalik (Auburn) MSC: 42C40 42C30 PDF BibTeX XML Cite \textit{M. L. Gordillo}, Arab. J. Math. 3, No. 1, 23--37 (2014; Zbl 1305.42036) Full Text: DOI OpenURL
Atreas, Nikolaos; Melas, Antonios; Stavropoulos, Theodoros Affine dual frames and extension principles. (English) Zbl 1294.42004 Appl. Comput. Harmon. Anal. 36, No. 1, 51-62 (2014). MSC: 42C15 PDF BibTeX XML Cite \textit{N. Atreas} et al., Appl. Comput. Harmon. Anal. 36, No. 1, 51--62 (2014; Zbl 1294.42004) Full Text: DOI OpenURL
Lu, Da-Yong; Fan, Qi-Bin A class of tight framelet packets. (English) Zbl 1249.42021 Czech. Math. J. 61, No. 3, 623-639 (2011). MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{D.-Y. Lu} and \textit{Q.-B. Fan}, Czech. Math. J. 61, No. 3, 623--639 (2011; Zbl 1249.42021) Full Text: DOI EuDML Link OpenURL
Li, Yun-Zhang; Zhou, Feng-Ying The characterization of a class of multivariate MRA and semi-orthogonal Parseval frame wavelets. (English) Zbl 1218.42019 Appl. Math. Comput. 217, No. 22, 9151-9164 (2011). MSC: 42C40 PDF BibTeX XML Cite \textit{Y.-Z. Li} and \textit{F.-Y. Zhou}, Appl. Math. Comput. 217, No. 22, 9151--9164 (2011; Zbl 1218.42019) Full Text: DOI OpenURL
Cao, Chunhong; Gao, Xieping Minimum-energy wavelet frame on the interval with arbitrary integer dilation factor. (English) Zbl 1207.42027 J. Comput. Appl. Math. 235, No. 8, 1885-1896 (2011). MSC: 42C40 PDF BibTeX XML Cite \textit{C. Cao} and \textit{X. Gao}, J. Comput. Appl. Math. 235, No. 8, 1885--1896 (2011; Zbl 1207.42027) Full Text: DOI OpenURL
Lu, Dayong; Fan, Qibin Characterizations of \(L_p(\mathbb R)\) using tight wavelet frames. (English) Zbl 1240.42175 Wuhan Univ. J. Nat. Sci. 15, No. 6, 461-466 (2010). MSC: 42C40 42B25 42C15 PDF BibTeX XML Cite \textit{D. Lu} and \textit{Q. Fan}, Wuhan Univ. J. Nat. Sci. 15, No. 6, 461--466 (2010; Zbl 1240.42175) Full Text: DOI OpenURL
Yongdong, Huang; Fengjuan, Zhu Characterizations of tight frame wavelets with special dilation matrices. (English) Zbl 1205.94031 Math. Probl. Eng. 2010, Article ID 128294, 26 p. (2010). MSC: 94A11 42C15 42C40 PDF BibTeX XML Cite \textit{H. Yongdong} and \textit{Z. Fengjuan}, Math. Probl. Eng. 2010, Article ID 128294, 26 p. (2010; Zbl 1205.94031) Full Text: DOI EuDML OpenURL
Yu, Xiaojiang Semiorthogonal multiresolution analysis frames in higher dimensions. (English) Zbl 1194.42041 Acta Appl. Math. 111, No. 3, 257-286 (2010). MSC: 42C15 42C40 94A12 94A08 15B36 PDF BibTeX XML Cite \textit{X. Yu}, Acta Appl. Math. 111, No. 3, 257--286 (2010; Zbl 1194.42041) Full Text: DOI OpenURL
Bownik, Marcin; Hoover, Kenneth R. Dimension functions of rationally dilated GMRAs and wavelets. (English) Zbl 1193.42118 J. Fourier Anal. Appl. 15, No. 5, 585-615 (2009). MSC: 42C40 PDF BibTeX XML Cite \textit{M. Bownik} and \textit{K. R. Hoover}, J. Fourier Anal. Appl. 15, No. 5, 585--615 (2009; Zbl 1193.42118) Full Text: DOI OpenURL
Guochang, Wu; Xiaohui, Yang; Zhanwei, Liu MRA Parseval frame wavelets and their multipliers in \(L^2(\mathbb R^n)\). (English) Zbl 1183.93124 Math. Probl. Eng. 2009, Article ID 492585, 17 p. (2009). MSC: 93E11 65T60 PDF BibTeX XML Cite \textit{W. Guochang} et al., Math. Probl. Eng. 2009, Article ID 492585, 17 p. (2009; Zbl 1183.93124) Full Text: DOI OpenURL
Bayram, ịlker; Selesnick, Ivan W. On the frame bounds of iterated filter banks. (English) Zbl 1169.94007 Appl. Comput. Harmon. Anal. 27, No. 2, 255-262 (2009). MSC: 94A11 42C40 PDF BibTeX XML Cite \textit{ị. Bayram} and \textit{I. W. Selesnick}, Appl. Comput. Harmon. Anal. 27, No. 2, 255--262 (2009; Zbl 1169.94007) Full Text: DOI OpenURL
Romero, Juan R.; Alexander, Simon K.; Baid, Shikha; Jain, Saurabh; Papadakis, Manos The geometry and the analytic properties of isotropic multiresolution analysis. (English) Zbl 1170.65109 Adv. Comput. Math. 31, No. 1-3, 283-328 (2009). Reviewer: Qingtang Jiang (St. Louis) MSC: 65T60 42C40 94A08 PDF BibTeX XML Cite \textit{J. R. Romero} et al., Adv. Comput. Math. 31, No. 1--3, 283--328 (2009; Zbl 1170.65109) Full Text: DOI OpenURL
Bownik, Marcin; Rzeszotnik, Ziemowit Construction and reconstruction of tight framelets and wavelets via matrix mask functions. (English) Zbl 1155.42008 J. Funct. Anal. 256, No. 4, 1065-1105 (2009). MSC: 42C40 PDF BibTeX XML Cite \textit{M. Bownik} and \textit{Z. Rzeszotnik}, J. Funct. Anal. 256, No. 4, 1065--1105 (2009; Zbl 1155.42008) Full Text: DOI OpenURL
Goh, Say Song; Teo, K. M. Extension principles for tight wavelet frames of periodic functions. (English) Zbl 1258.42031 Appl. Comput. Harmon. Anal. 25, No. 2, 168-186 (2008). MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{S. S. Goh} and \textit{K. M. Teo}, Appl. Comput. Harmon. Anal. 25, No. 2, 168--186 (2008; Zbl 1258.42031) Full Text: DOI OpenURL
Goh, Say Song; Teo, K. M. Wavelet frames and shift-invariant subspaces of periodic functions. (English) Zbl 1088.42021 Appl. Comput. Harmon. Anal. 20, No. 3, 326-344 (2006). MSC: 42C40 42A16 42B05 PDF BibTeX XML Cite \textit{S. S. Goh} and \textit{K. M. Teo}, Appl. Comput. Harmon. Anal. 20, No. 3, 326--344 (2006; Zbl 1088.42021) Full Text: DOI OpenURL
Benedetto, John J.; Pfander, Götz E. Frame expansions for Gabor multipliers. (English) Zbl 1095.42018 Appl. Comput. Harmon. Anal. 20, No. 1, 26-40 (2006). Reviewer: Ole Christensen (Lyngby) MSC: 42C15 PDF BibTeX XML Cite \textit{J. J. Benedetto} and \textit{G. E. Pfander}, Appl. Comput. Harmon. Anal. 20, No. 1, 26--40 (2006; Zbl 1095.42018) Full Text: DOI OpenURL
Kim, Hong Oh; Kim, Rae Young; Lim, Jae Kun The infimum cosine angle between two finitely generated shift-invariant spaces and its applications. (English) Zbl 1085.42017 Appl. Comput. Harmon. Anal. 19, No. 2, 253-281 (2005). Reviewer: Ole Christensen (Lyngby) MSC: 42C15 42C40 15A09 PDF BibTeX XML Cite \textit{H. O. Kim} et al., Appl. Comput. Harmon. Anal. 19, No. 2, 253--281 (2005; Zbl 1085.42017) Full Text: DOI OpenURL
Kim, Hong Oh; Kim, Rae Young; Lim, Jae Kun On the spectrums of frame multiresolution analyses. (English) Zbl 1061.42018 J. Math. Anal. Appl. 305, No. 2, 528-545 (2005). MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{H. O. Kim} et al., J. Math. Anal. Appl. 305, No. 2, 528--545 (2005; Zbl 1061.42018) Full Text: DOI OpenURL
Aldroubi, Akram; Larson, David; Tang, Wai-Shing; Weber, Eric Geometric aspects of frame representations of abelian groups. (English) Zbl 1054.43008 Trans. Am. Math. Soc. 356, No. 12, 4767-4786 (2004). Reviewer: Alexander Lindner (München) MSC: 43A70 42C40 43A45 46N99 94A20 PDF BibTeX XML Cite \textit{A. Aldroubi} et al., Trans. Am. Math. Soc. 356, No. 12, 4767--4786 (2004; Zbl 1054.43008) Full Text: DOI arXiv OpenURL
Mu, Lehua; Zhang, Zhihua; Zhang, Peixuan On the higher-dimensional wavelet frames. (English) Zbl 1040.42034 Appl. Comput. Harmon. Anal. 16, No. 1, 44-59 (2004). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 PDF BibTeX XML Cite \textit{L. Mu} et al., Appl. Comput. Harmon. Anal. 16, No. 1, 44--59 (2004; Zbl 1040.42034) Full Text: DOI OpenURL
Ashino, R.; Desjardins, S. J.; Heil, C.; Nagase, M.; Vaillancourt, R. Smooth tight frame wavelets and image microanalysis in the Fourier domain. (English) Zbl 1044.42027 Comput. Math. Appl. 45, No. 10-11, 1551-1579 (2003). MSC: 42C40 94A08 PDF BibTeX XML Cite \textit{R. Ashino} et al., Comput. Math. Appl. 45, No. 10--11, 1551--1579 (2003; Zbl 1044.42027) Full Text: DOI OpenURL
Daubechies, Ingrid; Han, Bin; Ron, Amos; Shen, Zuowei Framelets: MRA-based constructions of wavelet frames. (English) Zbl 1035.42031 Appl. Comput. Harmon. Anal. 14, No. 1, 1-46 (2003). Reviewer: Wojciech Czaja (Wrocław) MSC: 42C40 42C15 PDF BibTeX XML Cite \textit{I. Daubechies} et al., Appl. Comput. Harmon. Anal. 14, No. 1, 1--46 (2003; Zbl 1035.42031) Full Text: DOI OpenURL
Han, Deguang Approximations for Gabor and wavelet frames. (English) Zbl 1021.42021 Trans. Am. Math. Soc. 355, No. 8, 3329-3342 (2003). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 47B10 PDF BibTeX XML Cite \textit{D. Han}, Trans. Am. Math. Soc. 355, No. 8, 3329--3342 (2003; Zbl 1021.42021) Full Text: DOI OpenURL
Kim, Hong Oh; Kim, Rae Young; Lee, Yong Hoon; Lim, Jae Kun On Riesz wavelets associated with multiresolution analyses. (English) Zbl 1017.42025 Appl. Comput. Harmon. Anal. 13, No. 2, 138-150 (2002). Reviewer: Richard A.Zalik (Auburn University) MSC: 42C40 PDF BibTeX XML Cite \textit{H. O. Kim} et al., Appl. Comput. Harmon. Anal. 13, No. 2, 138--150 (2002; Zbl 1017.42025) Full Text: DOI OpenURL
Christensen, Ole; Lindner, Alexander M. Decomposition of Riesz frames and wavelets into a finite union of linearly independent sets. (English) Zbl 1035.42030 Linear Algebra Appl. 355, No. 1-3, 147-159 (2002). Reviewer: Wojciech Czaja (Wrocław) MSC: 42C40 PDF BibTeX XML Cite \textit{O. Christensen} and \textit{A. M. Lindner}, Linear Algebra Appl. 355, No. 1--3, 147--159 (2002; Zbl 1035.42030) Full Text: DOI OpenURL
Paluszyński, Maciej; Šikić, Hrvoje; Weiss, Guido; Xiao, Shaoliang Generalized low pass filters and MRA frame wavelets. (English) Zbl 0985.42020 J. Geom. Anal. 11, No. 2, 311-342 (2001). Reviewer: Ole Christensen (Lyngby) MSC: 42C40 PDF BibTeX XML Cite \textit{M. Paluszyński} et al., J. Geom. Anal. 11, No. 2, 311--342 (2001; Zbl 0985.42020) Full Text: DOI OpenURL
Christensen, Ole Frames, Riesz bases, and discrete Gabor/wavelet expansions. (English) Zbl 0982.42018 Bull. Am. Math. Soc., New Ser. 38, No. 3, 273-291 (2001). Reviewer: Radu Balan (Princeton) MSC: 42C40 41A58 PDF BibTeX XML Cite \textit{O. Christensen}, Bull. Am. Math. Soc., New Ser. 38, No. 3, 273--291 (2001; Zbl 0982.42018) Full Text: DOI OpenURL
Kim, Hong Oh; Lim, Jae Kun On frame wavelets associated with frame multiresolution analysis. (English) Zbl 1022.94001 Appl. Comput. Harmon. Anal. 10, No. 1, 61-70 (2001). MSC: 94A11 42C40 94A12 PDF BibTeX XML Cite \textit{H. O. Kim} and \textit{J. K. Lim}, Appl. Comput. Harmon. Anal. 10, No. 1, 61--70 (2001; Zbl 1022.94001) Full Text: DOI OpenURL
Strohmer, Thomas Rates of convergence for the approximation of dual shift-invariant systems in \(\ell^2 (\mathbb{Z})\). (English) Zbl 0981.42020 J. Fourier Anal. Appl. 5, No. 6, 599-615 (1999). MSC: 42C40 65T60 41A25 47B35 94A12 PDF BibTeX XML Cite \textit{T. Strohmer}, J. Fourier Anal. Appl. 5, No. 6, 599--615 (1999; Zbl 0981.42020) Full Text: DOI arXiv EuDML OpenURL