Intertemporal general equilibrium model of the Russian economy based on national accounts deaggregation. (English. Russian original) Zbl 1297.91121

J. Math. Sci., New York 197, No. 2, 175-236 (2014); translation from Tr. Semin. Im. I. G. Petrovskogo 29, No. 1, 43-145 (2013).
Summary: The paper describes a three-product intertemporal general equilibrium model of the Russian economy. The System Analysis of Evolving Economy (SAEE) approach to modelling economic processes developed in 1975 is described. Based on SAEE Intertemporal Equilibrium Model with Control of Capital (IEMCC) and three-product nonlinear deaggregation of Russian national accounts by consumption are described. The model agents of two types are introduced: mass (rational) and individual (scenario) agents. The former type includes Bank, Producer, Household, Owner, and Trader. The latter type includes State, Central Bank, Exporter, and Importer. The model is reduced to a boundary-value problem for a significantly nonlinear system of equations. These equations are derived from the initial hypothesis by means of the original economic modelling assistance system ECOMOD which is developed in the computer algebra system MAPLE. The model is adjusted with respect to official statistical quarterly data from 2004 till 2010. The calculation results are provided. The model proves the ability to model the Russian economy as a result of interactions of rational and individual macroeconomic agents.


91B74 Economic models of real-world systems (e.g., electricity markets, etc.)
91B50 General equilibrium theory


Full Text: DOI


[1] V. M. Alekseev, V. M. Tikhonov, and S. V. Fomin, Optimal Control [in Russian], Fizmatlit, Moscow (2005).
[2] S. Anatoliev, Econometrics for Advanced Students. Lectures [in Russian], New Economic School, Moscow (2004).
[3] M. Yu. Andreev, N. P. Pilnik, and I. G. Pospelov, ”Strong turnpike property in the model of modern Russian banking system with rational expectations,” Zh. Nov. Ehkon. Assoc., 1, No. 2, 70–84 (2009).
[4] M. Yu. Andreev, N. P. Pilnik, and I. G. Pospelov, ”Modelling modern Russian banking system,” Ehkon. Zh. Vyssh. Shkoly Ehkon., 13, No. 2, 143–171 (2009).
[5] M. Yu. Andreev, N. P. Pilnik, and I. G. Pospelov, Econometric Research and Model Description of Modern Russian Banking System [in Russian], VC RAN, Moscow (2008).
[6] M. Yu. Andreev and I. G. Pospelov, ”Capital in a stochastic dynamic general equilibrium model,” Mat. Model., 19, No. 9 (2007).
[7] M. Yu. Andreev, I. G. Pospelov, I. I. Pospelova, and M. A. Khokhlov, The New Modelling Technology and the Model of Modern Russian Economy [in Russian], MIFI, Moscow (2007).
[8] A. R. Belousov and E. A. Abramova, ”Financial flows integrated matrices (methodical and instrumental approaches),” Probl. Prognoz., No. 1 (2000).
[9] V. A. Bessonov, Problems of Analysis of Russia’s Macroeconomic Dynamics in the Transitional Period [in Russian], Inst. Ehkon. Perekh. Perioda, Moscow (2005).
[10] V. P. Vrzheshch, I. G. Pospelov, and M. A. Khokhlov, ”Model desagregation of macroeconomic data,” Ehkon. Zh. Vyssh. Shkoly Ehkon., 14, No. 1, 88–104 (2010).
[11] E. B. Ershov, Situational Theory for Prices and Indexes [in Russian], RIOR, Moscow (2011).
[12] N. K. Zavriev and I. G. Pospelov, ”Studying mathematical models with instrumental system ECOMOD,” Mat. Model., 5, No. 8, 57–74 (2000). · Zbl 1035.91507
[13] N. K. Zavriev, I. G. Pospelov, L. Ya. Pospelova, and S. V. Chukanov, The Development of Economic Mathematical Modelling Support System ECOMOD [in Russian], VC RAN, Moscow (1999). · Zbl 0930.91033
[14] V. V. Ivanter, O. D. Govtvan, M. Yu. Ksenofontov, et al., ”The economics of growth (the middle-term conception of Russia’s development), Probl. Prognoz., No. 1 (2000).
[15] S. I. Komarov, A. A. Petrov, I. G. Pospelov, and L. Ya. Pospelova, ”Presenting knowledge from mathematical economic models,” Izv. Ross. Akad. Nauk Teor. Sistemy Upravlen., No. 5, 37–59 (1995).
[16] I. A. Kondrakov, L. Ya. Pospelova, D. A. Usanov, and A. A. Shananin, The Technologies for Market Analysis Based on Generalized Nonparametric Approach [in Russian], VC RAN, Moscow (2010).
[17] P. S. Krasnoshchekov and A. A. Petrov, The Principles of Model Development [in Russian], Fazis, Moscow (2000). · Zbl 0998.93001
[18] V. P. Maslov, Quantum Economics [in Russian], Nauka, Moscow (2006). · Zbl 1163.62356
[19] U. Maki, ”Models are experiments, experiments are models,” J. Econ. Methodology, 12, Issue 2 (2005).
[20] A. A. Petrov, On Economics in Mathematical Terms [in Russian], Fazis, Moscow (2003).
[21] A. A. Petrov and I. G. Pospelov, ”Mathematical models of Russian economy,” Vestn. RAN, 79, No. 6, 492–506 (2009).
[22] A. A. Petrov, I. G. Pospelov, and A. A. Shananin, Experience in Mathematical Modelling of Economy [in Russian], Energoatomizdat, Moscow (1996). · Zbl 0987.91500
[23] A. A. Petrov, I. G. Pospelov, and A. A. Shananin, From Gosplan to Ineffective Market: Mathematical Analysis of Development of Russian Economic Structures, Edwin Mellen Press, Lewiston, N.Y. (1999).
[24] N. P. Pilnik and I. G. Pospelov, A Firm’s Goals Description in a Dynamic General Equilibrium Model [in Russian], VC RAN, Moscow (2009).
[25] N. P. Pilnik and I. G. Pospelov, ”Natural terminal conditions in models of intertemporal equilibrium,” Ehkon. Zh. Vyssh. Shkoly Ehkon., 11, No. 1, 3–35 (2007).
[26] V. M. Polterovich, The Economic Theory Crisis [in Russian], http://www.blagodeteleva-vovk.com/biblioteka/biblio/stat/crisis_ek.html (12.08.2011).
[27] I. G. Pospelov, Economic Dynamics Models Based on Equilibrium of Economic Agents Forecasts [in Russian], VC RAN, Moscow (2003).
[28] I. G. Pospelov, Economic Structures Modelling [in Russian], Fazis, Moscow (2003).
[29] I. G. Pospelov, ”Modelling Russian economy in crisis,” Vopr. Ehkon., No. 11, 50–75 (2009).
[30] I. G. Pospelov, ”Rationality of macroagents: Who has utility function?” in: Proc. of VI Moscow Int. Conf. on Operations Research (ORM 2010), Moscow State University, CMC, Moscow, MAKS PRESS (2010), pp. 85–86.
[31] I. G. Pospelov, The Model of Behavior Selection in Social-Economic Systems [in Russian], http://www.ccas.ru/mmes/mmest/podraj.htm .
[32] A. V. Sidorovich, Economics [in Russian], Delo i Servis, Moscow (2007).
[33] A. D. Smirnov, ”Credit bubble and crisis,” Vopr. Ehkon., No. 10 (2008).
[34] Credit Organizations Reference. Bank of Russia [in Russian], http://www.cbr.ru/credit/ (18.08.2011).
[35] Federal Treasury of Russia [in Russian], http://roskazna.ru/reports/cb.html .
[36] Federal Statistical Agency of Russia [in Russian], http://www.gks.ru .
[37] J. Forrester, World Dynamics [Russian translation], Nauka, Moscow (1979).
[38] D. S. Chernavsky, N. I. Starkov, and A. V. Shcherbakov, ”On problems of physics economics (actual problems overview),” UFN, No. 9, 1045–1066 (2002).
[39] A. A. Sharov and Yu. A. Shreider, Systems and Models [in Russian], Radio i Svyaz’, Moscow (1982).
[40] Yu. A. Shebeko, Imitative Modelling and Situational Analysis of Business-Processes of Management Decision Taking [in Russian], MAI, Moscow (1990).
[41] Econophysics. Modern Physics in Search of Economic Theory [in Russian], MIFI (2007).
[42] Yu. V. Yakovets, Forecasting Cycles and Crises [in Russian], MFK, Moscow (2000).
[43] P. S. Armington, ”A theory of demand for products distinguished by place of production,” Int. Monetary Fund Staff Papers, 16, 159–176 (1969).
[44] P. B. Dixon, B. R. Parmenter, J. Sutton, and D. P. Vincent, ORANI: A Multisectoral Model of the Australian Economy, North-Holland, Amsterdam (1982).
[45] P. B. Dixon and M. T. Rimmer, Forecasting and Policy Analysis with a Dynamic CGE Model of Australia, Monash Univ. Center of Policy Stud. Working Paper N OP-90, http://www.monash.edu.au/policy/ (June 1998).
[46] Handbook of Mathematical Economics, North-Holland, Amsterdam (1991). · Zbl 0889.90001
[47] H. Jacoby, J. Reilly, J. McFarland, and S. Paltsev, ”Technology and technical change in the MIT EPPA model,” Energy Econ., 28, No. 5-6, 610–631 (2006).
[48] A. Kirman, ”Whom or what does the representative individual represent?” J. Econ. Perspectives, 6, No. 2, 117–136 (1992).
[49] Maple 9 Learning Guide, Maplesoft, Waterloo Maple (2003).
[50] D. Meadows, The Limits to Growth, Universe Books, New York (1972). · Zbl 0236.93051
[51] M. Mesarovic and E. Pestel, Mankind at the Turning Point, Lutton and Reader’s Digest Press, New York (1974). · Zbl 0355.93004
[52] M. Sidrauski, ”Rational choices and patterns of growth in a monetary economy,” Am. Econ. Rev., 57, 534–544 (1967).
[53] S. J. Tumovsky, Methods of Macroeconomic Dynamics, MIT Press (2000).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.