×

Dynamical behaviors of an SIRI epidemic model with nonlinear incidence and latent period. (English) Zbl 1344.92164

Summary: In this paper, we study an SIRI epidemic model with nonlinear incidence rate and latent period, namely \( \frac{kI(t-\tau)S}{1+\alpha I^h (t-\tau)} \), which describes the psychological effect of certain serious diseases on the community when the size of the set of infective individuals is getting larger. We first obtain the threshold dynamics on the global stability of the equilibria for the model without latent period, and then we analyze the stability and Hopf bifurcation for the model with the latent period. The results show the influence of nonlinear incidence rate and latent period on the dynamical behaviors of the SIRI model. The examples and its simulations are given to illustrate the obtained results.

MSC:

92D30 Epidemiology
34C23 Bifurcation theory for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tudor D: A deterministic model for herpes infections in human and animal populations.SIAM Rev. 1990, 32:136-139. 10.1137/1032003 · Zbl 0692.92018 · doi:10.1137/1032003
[2] Chin J: Control of Communicable Diseases Manual. American Public Health Association, Washington; 1999.
[3] Martin SW: Livestock Disease Eradication: Evaluation of the Cooperative State Federal Bovine Tuberculosis Eradication Program. National Academy Press, Washington; 1994.
[4] VanLandingham KE, Marsteller HB, Ross GW, Hayden FG: Relapse of herpes simplex encephalitis after conventional acyclovir therapy.JAMA 1988, 259:1051-1053. 10.1001/jama.1988.03720070051034 · doi:10.1001/jama.1988.03720070051034
[5] Moreira HN, Wang Y:Global stability in an[InlineEquation not available: see fulltext.]model.SIAM Rev. 1997, 39:496-502. 10.1137/S0036144595295879 · Zbl 0893.92027 · doi:10.1137/S0036144595295879
[6] van den Driessche P, Wang L, Zou X: Modeling diseases with latency and relapse.Math. Biosci. Eng. 2007, 4:205-219. · Zbl 1123.92018 · doi:10.3934/mbe.2007.4.205
[7] Capasso V, Serio G: A generalization of the Kermack-McKendrick deterministic epidemic model.Math. Biosci. 1978, 42:43-61. 10.1016/0025-5564(78)90006-8 · Zbl 0398.92026 · doi:10.1016/0025-5564(78)90006-8
[8] Ruan S, Wang W: Dynamical behavior of an epidemic model with a nonlinear incidence rate.J. Differ. Equ. 2003, 188:135-163. 10.1016/S0022-0396(02)00089-X · Zbl 1028.34046 · doi:10.1016/S0022-0396(02)00089-X
[9] Xiao D, Ruan S: Global analysis of an epidemic model with nonmonotone incidence rate.Math. Biosci. 2007, 208:419-429. 10.1016/j.mbs.2006.09.025 · Zbl 1119.92042 · doi:10.1016/j.mbs.2006.09.025
[10] Yang Y, Xiao D: Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models.Discrete Contin. Dyn. Syst., Ser. B 2010, 13:195-211. · Zbl 1187.34121
[11] Liu WM, Levin SA, Iwasa Y: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models.J. Math. Biol. 1986, 23:187-204. 10.1007/BF00276956 · Zbl 0582.92023 · doi:10.1007/BF00276956
[12] Derrick WR, van der Driessche P: A disease transmission model in a nonconstant population.J. Math. Biol. 1993, 31:495-512. · Zbl 0772.92015 · doi:10.1007/BF00173889
[13] Hethcote HW, Lewis MA, van der Driessche P: An epidemiological model with a delay and a nonlinear incidence rate.J. Math. Biol. 1989, 27:49-64. 10.1007/BF00276080 · Zbl 0714.92021 · doi:10.1007/BF00276080
[14] Beretta E, Takeuchi Y: Global stability of an SIR epidemic model with time delays.J. Math. Biol. 1995, 33:250-260. · Zbl 0811.92019 · doi:10.1007/BF00169563
[15] Lizana M, Rivero J: Multiparametric bifurcations for a model in epidemiology.J. Math. Biol. 1996, 35:21-36. 10.1007/s002850050040 · Zbl 0868.92024 · doi:10.1007/s002850050040
[16] Jin Y, Wang W, Xiao S: An SIRS model with a nonlinear incidence rate.Chaos Solitons Fractals 2007, 34:1482-1497. 10.1016/j.chaos.2006.04.022 · Zbl 1152.34339 · doi:10.1016/j.chaos.2006.04.022
[17] Li G, Wang W: Bifurcation analysis of an epidemic model with nonlinear incidence.Appl. Math. Comput. 2009, 214:411-423. 10.1016/j.amc.2009.04.012 · Zbl 1168.92323 · doi:10.1016/j.amc.2009.04.012
[18] Hale, JK, Applied Mathematical Sciences 3 (1977), New York · doi:10.1007/978-1-4612-9892-2
[19] Kuang Y: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego; 1993. · Zbl 0777.34002
[20] van der Driessche P, Watmough J: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.Math. Biosci. 2002, 180:29-48. 10.1016/S0025-5564(02)00108-6 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[21] Brauer, F.; van der Driessche, P.; Wu, J., Lecture Notes in Mathematics 1945 (2008), New York · Zbl 1159.92034 · doi:10.1007/978-3-540-78911-6
[22] Zhang, ZF; Ding, TR; Huang, WZ; Dong, ZX, Translations of Mathematical Monographs 101 (1992), Providence
[23] Lasalle, JP, An invariance principle in the theory of stability, 277-286 (1967), New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.