×

Modelling high-velocity impact phenomena using unstructured dynamically-adaptive Eulerian meshes. (English) Zbl 0963.74075

From the summary: We present an adaptive-mesh computational method for the solution of continuum equations of compressible flow for high-velocity impact dynamics. The integral form of the governing equations is used to derive a stable form of energy equation, using rather internal than total energy, after which the corresponding differential forms are solved approximately in two dimensions via a three-stage (pressure, stress and advection) finite difference scheme. The truncation errors of the scheme are studied, and the scheme is first verified on a test problem of a collapsing hollow spherical shell, for which an analytical solution is known, before being applied to more general configuration motivated by the study of penetration mechanics.

MSC:

74S20 Finite difference methods applied to problems in solid mechanics
74M20 Impact in solid mechanics
76N99 Compressible fluids and gas dynamics

Software:

SLIC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berger, M.J., Colella, P., 1989. Locally adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64-84.; Berger, M.J., Colella, P., 1989. Locally adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64-84. · Zbl 0665.76070
[2] Berger, M.J., Oliger, J., 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484-512.; Berger, M.J., Oliger, J., 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484-512. · Zbl 0536.65071
[3] Coirier, W.J., Powell, K.G., 1995. An accuracy assessment of Cartesian mesh approaches for the Euler equations. J. Comput. Phys. 117, 121-131.; Coirier, W.J., Powell, K.G., 1995. An accuracy assessment of Cartesian mesh approaches for the Euler equations. J. Comput. Phys. 117, 121-131. · Zbl 0817.76055
[4] Gentry, R.A., Martin, R.E., Daly, B.J., 1966. An Eulerian differencing method for unsteady compressible flow problems. J. Comput. Phys. 1, 87-118.; Gentry, R.A., Martin, R.E., Daly, B.J., 1966. An Eulerian differencing method for unsteady compressible flow problems. J. Comput. Phys. 1, 87-118. · Zbl 0158.22606
[5] Hirsch, C., 1988. Numerical Computation of Internal and External Flows, vols 1 and 2. Wiley, Chichester.; Hirsch, C., 1988. Numerical Computation of Internal and External Flows, vols 1 and 2. Wiley, Chichester. · Zbl 0662.76001
[6] Hunter, S.C., 1976. Mechanics of Continuous Media. Ellis Horwood/Wiley, Chichester.; Hunter, S.C., 1976. Mechanics of Continuous Media. Ellis Horwood/Wiley, Chichester. · Zbl 0385.73002
[7] Kelmanson, M.A., 1991. A menu-driven preprocessor for unstructured rectangular mesh generation in adaptive 2-D Eulerian impact codes. Report No. 4, DERA Contract D/ER1/9/4/2062/142/RARDE.; Kelmanson, M.A., 1991. A menu-driven preprocessor for unstructured rectangular mesh generation in adaptive 2-D Eulerian impact codes. Report No. 4, DERA Contract D/ER1/9/4/2062/142/RARDE.
[8] Kelmanson, M.A., 1992. Implementation details of 2-D adaptive Eulerian mesh preprocessor, Report No. 5, DERA Contract D/ER1/9/4/2062/142/RARDE.; Kelmanson, M.A., 1992. Implementation details of 2-D adaptive Eulerian mesh preprocessor, Report No. 5, DERA Contract D/ER1/9/4/2062/142/RARDE.
[9] Kelmanson, M.A., 1993a. Error analysis of 2-D Eulerian impact code. Report No. 6, DERA Contract D/ER1/9/4/2062/142/RARDE.; Kelmanson, M.A., 1993a. Error analysis of 2-D Eulerian impact code. Report No. 6, DERA Contract D/ER1/9/4/2062/142/RARDE.
[10] Kelmanson, M.A., 1993b. Unstructured rectangular adaptive mesh generation for 2-D conservative schemes. Applied Mathematics Letters 6, 17-22.; Kelmanson, M.A., 1993b. Unstructured rectangular adaptive mesh generation for 2-D conservative schemes. Applied Mathematics Letters 6, 17-22. · Zbl 0831.65124
[11] Kelmanson, M.A., 1997. Truncation errors in a 2-D hyperbolic PDE integration scheme. Mathematical Engineering in Industry 6, 171-183.; Kelmanson, M.A., 1997. Truncation errors in a 2-D hyperbolic PDE integration scheme. Mathematical Engineering in Industry 6, 171-183. · Zbl 0896.73071
[12] Khokhlov, A.M., 1997. Fully-threaded tree for adaptive refinement fluid dynamics simulations. Naval Research Laboratory, Report NRL/MR/6404-97-7950, Washington.; Khokhlov, A.M., 1997. Fully-threaded tree for adaptive refinement fluid dynamics simulations. Naval Research Laboratory, Report NRL/MR/6404-97-7950, Washington.
[13] Landshoff, R., 1955. A numerical method for treating fluid flow in the presence of shocks. Los Alamos Scientific Report LA-1930.; Landshoff, R., 1955. A numerical method for treating fluid flow in the presence of shocks. Los Alamos Scientific Report LA-1930.
[14] Luchini, P., 1987. An adaptive-mesh finite-difference solution method for the Navier-Stokes equations. J. Comput. Phys. 68, 283-306.; Luchini, P., 1987. An adaptive-mesh finite-difference solution method for the Navier-Stokes equations. J. Comput. Phys. 68, 283-306. · Zbl 0609.76022
[15] Maunder, S.B., 1987. The Numerical Methods of Simulation and Study of Impact Mechanisms. Ph.D. thesis, University of Leeds.; Maunder, S.B., 1987. The Numerical Methods of Simulation and Study of Impact Mechanisms. Ph.D. thesis, University of Leeds.
[16] Maunder, S.B., 1991. A dynamically-adaptive 2-D Eulerian impact code utilising unstructured rectangular meshes. Report No. 3, DERA Contract D/ER1/9/4/2062/147/RARDE.; Maunder, S.B., 1991. A dynamically-adaptive 2-D Eulerian impact code utilising unstructured rectangular meshes. Report No. 3, DERA Contract D/ER1/9/4/2062/147/RARDE.
[17] Maunder, S.B., 1992. Adaptive Eulerian impact code. Report No. 4, DERA Contract D/ER1/9/4/2062/147/RARDE.; Maunder, S.B., 1992. Adaptive Eulerian impact code. Report No. 4, DERA Contract D/ER1/9/4/2062/147/RARDE.
[18] Maunder, S.B., 1993. Adaptive Leeds Impact Code: test simulations and enhancements. Report No. 5, DERA Contract D/ER1/9/4/2062/147/RARDE.; Maunder, S.B., 1993. Adaptive Leeds Impact Code: test simulations and enhancements. Report No. 5, DERA Contract D/ER1/9/4/2062/147/RARDE.
[19] Nash, M.A., 1986. Comparison between numerical schemes used in Version 120 of the HULL Eulerian code and the analytical solution to the free-running metal-sphere problem. Unclassified MOD (RARDE) Divisional Working Paper 4/86 (XT2) .; Nash, M.A., 1986. Comparison between numerical schemes used in Version 120 of the HULL Eulerian code and the analytical solution to the free-running metal-sphere problem. Unclassified MOD (RARDE) Divisional Working Paper 4/86 (XT2) .
[20] Noh, W.F., Woodward, P., 1976. A simple line interface calculation (SLIC) algorithm. Lawrence Livermore Laboratory, Report UCRL-77651.; Noh, W.F., Woodward, P., 1976. A simple line interface calculation (SLIC) algorithm. Lawrence Livermore Laboratory, Report UCRL-77651. · Zbl 0382.76084
[21] Quirk, J.J., 1994. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Computers Fluids 23, 125-142.; Quirk, J.J., 1994. An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies. Computers Fluids 23, 125-142. · Zbl 0788.76067
[22] Quirk, J.J., Karni, S., 1996. On the dynamics of shock-bubble interaction. J. Fluid Mech. 318, 129-163.; Quirk, J.J., Karni, S., 1996. On the dynamics of shock-bubble interaction. J. Fluid Mech. 318, 129-163. · Zbl 0877.76046
[23] Schmitt, J.A., 1980. Truncation error terms in the kinetic energy calculation in the HELP algorithm and their consequences. J. Comput. Phys. 35, 206-228.; Schmitt, J.A., 1980. Truncation error terms in the kinetic energy calculation in the HELP algorithm and their consequences. J. Comput. Phys. 35, 206-228. · Zbl 0434.73089
[24] Thompson, J.F., 1985. A survey of dynamically-adaptive grids in the numerical solution of partial differential equations. Appl. Num. Math. 1, 3-27.; Thompson, J.F., 1985. A survey of dynamically-adaptive grids in the numerical solution of partial differential equations. Appl. Num. Math. 1, 3-27. · Zbl 0551.65081
[25] Tillotson, J.H., 1962. General Atomic Report GA-3216.; Tillotson, J.H., 1962. General Atomic Report GA-3216.
[26] Verney, D., 1968. Evaluation de la limite elastique du cuivre et de luranium par des expériences dimplosions lentes. In: Behaviour of Dense Media Under High Dynamic Pressures (Proc. Symposium Haut Pression Dynamique, Paris, September 1967) , Gordon and Breach.; Verney, D., 1968. Evaluation de la limite elastique du cuivre et de luranium par des expériences dimplosions lentes. In: Behaviour of Dense Media Under High Dynamic Pressures (Proc. Symposium Haut Pression Dynamique, Paris, September 1967) , Gordon and Breach.
[27] Wilson, D.R., 1997a. Some implications of adaption for the 3-D GRIM code. DERA Contract WSFH/U2122C.; Wilson, D.R., 1997a. Some implications of adaption for the 3-D GRIM code. DERA Contract WSFH/U2122C.
[28] Wilson, D.R., 1997b. Finite-difference formulas for an adaptive code with face-centered velocities. DERA Contract WSS/U6884.; Wilson, D.R., 1997b. Finite-difference formulas for an adaptive code with face-centered velocities. DERA Contract WSS/U6884.
[29] Young, D.P., Melvin, R.G., Bieterman, M.B., Johnson, F.T., Samant, S.S., Busoletti, J.E., 1991. A locally-refined rectangular grid finite element method: application to computational dynamics and computational physics. J. Comput. Phys. 92, 1-66.; Young, D.P., Melvin, R.G., Bieterman, M.B., Johnson, F.T., Samant, S.S., Busoletti, J.E., 1991. A locally-refined rectangular grid finite element method: application to computational dynamics and computational physics. J. Comput. Phys. 92, 1-66. · Zbl 0709.76078
[30] Zeeuw, D.D., Powell, K.G., 1993. An adaptively refined Cartesian mesh solver for the Euler equations. J. Comput. Phys. 104, 56-68.; Zeeuw, D.D., Powell, K.G., 1993. An adaptively refined Cartesian mesh solver for the Euler equations. J. Comput. Phys. 104, 56-68. · Zbl 0766.76066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.