×

Similarly homogeneous locally complete spaces with an intrinsic metric. (English. Russian original) Zbl 1497.53086

Russ. Math. 48, No. 11, 1-19 (2004); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2004, No. 11, 3-22 (2004).

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C30 Differential geometry of homogeneous manifolds
PDF BibTeX XML Cite
Full Text: MNR

References:

[1] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp.
[2] Sosov E. N., “O konechnoi kompaktnosti i polnote nekotorykh prostranstv otobrazhenii s metrikoi Buzemana”, Izv. vuzov. Matematika, 1993, no. 11, 62-68 · Zbl 0848.54020
[3] Pansu P., “Metriques de Carnot-Caratheodory et quasiisometries des espaces symetrique de rang une”, Ann. of Math., 119 (1989), 1-60 · Zbl 0678.53042
[4] Berestovskii V. N., Odnorodnye prostranstva s vnutrennei metrikoi, Dis. … dokt. fiz.-matem. nauk, Novosibirsk, 1990, 269 pp.
[5] Berestovskii V. N., “Geodezicheskie negolonomnykh levoinvariantnykh vnutrennikh metrik na gruppe Geizenberga i izoperimetriksy ploskosti Minkovskogo”, Sib. matem. zhurn., 35:1 (1994), 3-11 · Zbl 0834.53049
[6] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 1, Nauka, M., 1981, 344 pp.
[7] Rashevskii P. K., “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Moskovsk. ped. in-ta, 3:2 (1938), 83-94
[8] Chow W. L., “Systeme von linearen partiellen differential Gleichungen erster Ordnung”, Math. Ann., 117 (1939), 98-105 · Zbl 0022.02304
[9] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. · Zbl 0292.90042
[10] Berestovskii V. N., Zubareva I. A., “Formy sfer spetsialnykh negolonomnykh levoinvariantnykh vnutrennikh metrik na nekotorykh gruppakh Li”, Sib. matem. zhurn., 42:4 (2001), 731-748 · Zbl 0996.53036
[11] Alexander S. B., Bishop R. L., “Warped product of Hadamard spaces”, Manuscripta Math., 96 (1998), 487-505 · Zbl 0909.53050
[12] Chen C. -H., “Warped product of metric spaces of curvature bounded from above”, Trans. Amer. Math. Soc., 351 (1999), 4727-4740 · Zbl 0979.53035
[13] Bishop R. L., O’ Neill B., “Manifolds of negative curvature”, Trans. Amer. Math. Soc., 145 (1969), 1-49 · Zbl 0191.52002
[14] Bernig A., Foertsch T., Schroeder V., “Non standard metric products”, Beiträge Algebra Geom., 44:2 (2003), 499-510 · Zbl 1049.54009
[15] Foertsch T., Schroeder V., “Products of hyperbolic metric spaces”, Geom. Dedicata, 102 (2003), 197-212 · Zbl 1048.53027
[16] Grushin V. V., “Ob odnom klasse gipoellipticheskikh operatorov”, Matem. sb., 83:3 (1970), 456-473 · Zbl 0211.40503
[17] Berestovskii V. N., “Odnorodnye prostranstva s vnutrennei metrikoi”, DAN SSSR, 301:2 (1988), 268-271 · Zbl 0671.53037
[18] Berestovskii V. N., “Odnorodnye mnogoobraziya s vnutrennei metrikoi. I”, Sib. matem. zhurn., 29:6 (1988), 17-29 · Zbl 0686.53041
[19] Berestovskii V. N., “Odnorodnye mnogoobraziya s vnutrennei metrikoi. II”, Sib. matem. zhurn., 30:2 (1989), 14-28 · Zbl 0681.53029
[20] Berestovskii V. N., “O strukture odnorodnykh lokalno kompaktnykh prostranstv s vnutrennei metrikoi”, Sib. matem. zhurn., 30:1 (1989), 23-34 · Zbl 0694.53046
[21] Berestovskii V. N., “Submetrii prostranstvennykh form neotritsatelnoi krivizny”, Sib. matem. zhurn., 28:4 (1987), 44-56 · Zbl 0643.53053
[22] O’ Neill B., “The fundamental equations of a submersion”, Mich. Math. J., 13 (1966), 459-469 · Zbl 0145.18602
[23] Berestovskii V. N., Guijarro L., “A metric characterization of Riemannian submersions”, Ann. Global Anal. Geom., 18 (2000), 577-588 · Zbl 0992.53025
[24] Berestovskii V. N., “A metric characterization of Riemannian submersions for A. D. Alexandrov manifolds of bounded curvature”, Siberian Adv. Math., 13:4 (2003), 11-16
[25] Sharafutdinov V. A., “Teorema Pogorelova-Klingenberga dlya mnogoobrazii, gomeomorfnykh \(R^n\)”, Sib. matem. zhurn., 18:4 (1977), 915-925 · Zbl 0374.53018
[26] Perelman G., “Proof of the soul conjecture of Cheeger and Gromoll”, J. Diff. Geom., 40 (1994), 209-212 · Zbl 0818.53056
[27] Guijarro L., “On the metric structure of nonnegatively curved manifolds”, Pac. J. Math., 196:2 (2000), 429-444 · Zbl 0969.53015
[28] Vainshtein A. G., Gorelik E. M., Efremovich V. A., “Rassloenie ploskosti Lobachevskogo”, DAN SSSR, 241:2 (1978), 269-271
[29] Faizullin R. R., “O svyazi negolonomnoi metriki na gruppe Geizenberga s metrikoi Grushina”, Sib. matem. zhurn., 44:6 (2003), 1377-1384 · Zbl 1054.53062
[30] Kon-Fossen S. E., Nekotorye voprosy differentsialnoi geometrii v tselom, Fizmatgiz, M., 1959, 303 pp.
[31] Berestovskii V. N., “Odnorodnye \(G\)-prostranstva Buzemana”, Sib. matem. zhurn., 23:2 (1982), 3-15 · Zbl 0516.53059
[32] Szenthe J., “On the topological characterization of transitive Lie group actions”, Acta Sci. Math., 36:3/4 (1974), 323-344 · Zbl 0269.57019
[33] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987, 302 pp.
[34] Stinrod N., Topologiya kosykh proizvedenii, In. lit., M., 1953, 274 pp.
[35] Adams Dzh., Lektsii po gruppam Li, Nauka, M., 1979, 144 pp. · Zbl 0515.22007
[36] Yamabe H., “A generalization of a theorem of Gleason”, Ann. of Math., 58:2 (1953), 351-365 · Zbl 0053.01602
[37] Alekseevskii D. V., “\(S^n\) i \(E^n\) - edinstvennye rimanovy prostranstva, dopuskayuschie suschestvennoe konformnoe preobrazovanie”, UMH, 28:5 (1973), 225-226 · Zbl 0284.53035
[38] Alekseevskii D. V., “Gruppy konformnykh preobrazovanii rimanovykh prostranstv”, Matem. sb., 89:2 (1972), 280-296 · Zbl 0244.53031
[39] Alekseevskii D. V., Kimelfeld B. N., “Klassifikatsiya odnorodnykh konformno ploskikh rimanovykh mnogooobrazii”, Matem. zametki, 24:1 (1978), 103-110 · Zbl 0385.53047
[40] Rodionov E. D., Slavskii V. V., “Conformal deformations of the Riemannian metrics and homogeneous Riemannian spaces”, Comment. Math. Univ. Carolinae, 43:2 (2002), 271-282 · Zbl 1090.53039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.