A simple basis of ideal terms of Brouwerian semilattices. (English) Zbl 1040.06001

Summary: A list of four terms is given such that a subset of a Brouwerian lattice \({\mathbf S}\) containing 1 is a kernel (i.e. 1-class) of some congruence on \({\mathbf S}\) if and only if it is closed with respect to these four terms.


06A12 Semilattices
06B10 Lattice ideals, congruence relations
Full Text: EuDML


[1] Chajda I.: A localization of some congruence conditions in varieties with nullary operations. Ann. Univ. Sci. Budapest., Math. 30 (1987), 17-23. · Zbl 0636.08004
[2] Chajda I.: A characterization of congruence kernels in pseudocomplemented semilattices. · Zbl 1042.06002
[3] Chajda I., Halaš R.: Finite basis of ideal terms in ideal determined varieties. Algebra Universalis 37 (1997), 243-252. · Zbl 0902.08004
[4] Chajda I., Zedník J.: Determined congruence classes in Brouwerian semilattices. East-West J. Math) · Zbl 0964.08004
[5] Fichtner, K: Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen. Monatsh. Dt. Akad. Wiss. (Berlin) 12 (1970), 21-45. · Zbl 0198.33601
[6] Gumm H. P., Ursini A.: Ideals in universal algebras. Algebra Universalis 19 (1984), 45-54. · Zbl 0547.08001
[7] Köhler P.: Brouwerian semilattices, the lattice of total subalgebras. Universal Algebra Appl. 8 (1982), Banach Centre Publ., 47-56. · Zbl 0514.06009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.