×

Dimensional regularization in position space and a Forest Formula for Epstein-Glaser renormalization. (English) Zbl 1309.81173

The authors formulate dimensional regularization as a regularization method in position space and show that it can be used to give a closed expression for the renormalized time-ordered products as solutions to the induction scheme of Epstein-Glaser. For scalar fields, several examples are computed. The starting point is the main theorem of renormalization of Stora and Popineau.

MSC:

81T15 Perturbative methods of renormalization applied to problems in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv Link

References:

[16] Bergbauer, C.; Brunetti, R.; Kreimer, D.
[17] 17.F.Brennecke and M.Dütsch, “Removal of violations of the Master Ward Identity in perturbative QFT,” Rev. Math. Phys.20, 119-172 (2008);10.1142/S0129055X08003237e-print arXiv:0705.3160 [hep-th]. · Zbl 1149.81017
[18] 18.R.Brunetti, M.Dütsch, and K.Fredenhagen, “Perturbative algebraic quantum field theory and the renormalization groups,” Adv. Theor. Math. Phys.13(5), (2009);10.4310/ATMP.2009.v13.n5.a7e-print arXiv:0901.2038. · Zbl 1201.81090
[19] Brunetti, R.; Fredenhagen, K., Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds, Commun. Math. Phys., 208, 3, 623-661 (2000) · Zbl 1040.81067
[20] Brunetti, R.; Fredenhagen, K.; Ribeiro, P. L.
[21] Brouder, C.; Frabetti, A.; Menous, F., J. Algebr. Comb., 32, 557-578 (2010)
[22] Bollini, C. G.; Giambiagi, J. J., Dimensional renormalization: The number of dimensions as a regularizing parameter, Nuovo Cimento B, 12, 20-25 (1972)
[23] Bollini, C. G.; Giambiagi, J. J., Dimensional regularization in configuration space, Phys. Rev. D, 53, 10, 5761 (1996)
[24] Bergbauer, C.; Kreimer, D., The Hopf algebra of rooted trees in Epstein-Glaser renormalization, Ann. Henri Poincaré, 6, 2, 343-367 (2005) · Zbl 1065.81096
[25] Breitenlohner, P.; Maison, D., Dimensional renormalization and the action principle, Commun. Math. Phys., 52, 11-38 (1977)
[26] Breitenlohner, P.; Maison, D., Dimensionally renormalized Green’s functions for theories with massless particles. 1, Commun. Math. Phys., 52, 39-54 (1977)
[27] Breitenlohner, P.; Maison, D., Dimensionally renormalized Green’s functions for theories with massless particles. 2, Commun. Math. Phys., 52, 55-75 (1977)
[28] Buchholz, D.; Ojima, I.; Roos, H., Thermodynamic properties of non-equilibrium states in quantum field theory, Ann. Phys., 297, 2, 219-242 (2002) · Zbl 0995.81037
[29] Bogoliubov, N. N.; Parasiuk, O. S., Über die multiplikation der kausalfunktionen in der quantentheorie der felder, Acta Math., 97, 1-4, 227-266 (1957) · Zbl 0081.43302
[30] Bogoliubov, N. N.; Shirkov, D. V., Introduction to the Theory of Quantized Fields (1959) · Zbl 0088.21701
[31] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert problem, J. High Energy Phys., 1999, 24, 1-7 · Zbl 0957.81011
[32] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys., 210, 1, 249-273 (2000) · Zbl 1032.81026
[33] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the riemann-hilbert problem II: The β-function, diffeomorphisms and the renormalization group, Commun. Math. Phys., 216, 1, 215-241 (2001) · Zbl 1042.81059
[34] Connes, A.; Marcolli, M., Noncommutative Geometry, Quantum Fields and Motives (2007)
[35] Dütsch, M.; Fredenhagen, K., Algebraic quantum field theory, perturbation theory, and the loop expansion, Commun. Math. Phys., 219, 1, 5-30 (2001) · Zbl 1019.81041
[36] 36.M.Dütsch and K.Fredenhagen, “Perturbative algebraic field theory, and deformation quantization,” Mathematical Physics in Mathematics and Physics: Quantum and Operator Algebraic Aspects, Fields Institute Communications , edited by R.Longo, (AMS, Providence, RI, 2001), Vol. 30;e-print arXiv:hep-th/0101079. · Zbl 0990.81054
[37] Dütsch, M.; Fredenhagen, K., Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity, Rev. Math. Phys., 16, 10, 1291-1348 (2004) · Zbl 1084.81054
[38] Dütsch, Michael; Fredenhagen, Klaus; Iagolnitzer, D.; Moschella, U.; Boutet De Monvel, A.; Buchholz, D., Action Ward identity and the Stückelberg-Petermann renormalization group, Rigorous Quantum Field Theory, 113-123 (2006) · Zbl 1166.81349
[39] Dütsch, M., Non-uniqueness of quantized Yang-Mills theories, J. Phys. A: Math. Gen., 29, 7597-7617 (1996) · Zbl 0899.53054
[40] Dütsch, M., Connection between the renormaization groups of Stückelberg-Petermann and Wilson, Confluentes Mathematici, 4, 1240001 (2012) · Zbl 1241.81129
[41] Epstein, H.; Glaser, V., The role of locality in perturbation theory, Ann. Henri Poincaré A, 19, 3, 211-295 (1973) · Zbl 1216.81075
[42] Elizalde, E.; Odintsov, S. D.; Romeo, A.; Bytsenko, A. A.; Zerbini, S., Zeta Regularization Techniques with Applications (1994) · Zbl 1050.81500
[43] Farkas, E. C., Hopf algebras of smooth functions on compact Lie groups, Comment. Math. Univ. Carol., 41, 651-661 (2000) · Zbl 1051.16021
[44] Faà Di Bruno, F., Sullo sviluppo delle Funzioni, Ann. Sci. Mat. Fis., 6, 479-480 (1855)
[45] Figueroa, H.; Gracia-Bondía, J. M., Combinatorial Hopf algebras in quantum field theory I, Rev. Math. Phys., 17, 8, 881-976 (2005) · Zbl 1090.16016
[46] 46.K.Fredenhagen and K.Rejzner, “Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory,” Commun. Math. Phys.317, 697-725 (2013);10.1007/s00220-012-1601-1e-print arXiv.org:math-ph/1110.5232v1. · Zbl 1263.81245
[47] Frabetti, A., Renormalization Hopf algebras and combinatorial groups, lecture notes for summer school, Geometric and Topological Methods for Quantum Field Theory (2007)
[48] Gracia-Bondía, J. M.; Lazzarini, S.
[49] Gracia-Bondía, J. M.; Lazzarini, S., Improved Epstein-Glaser renormalization II. Lorentz invariant framework, J. Math. Phys., 44, 9, 3863-3875 (2003) · Zbl 1062.81114
[50] Groote, S.; Körner, J. G.; Pivovarov, A. A., On the evaluation of a certain class of Feynman diagrams in x-space: Sunrise-type topologies at any loop order, Ann. Phys., 322, 10, 2374-2445 (2007) · Zbl 1148.81020
[51] Hepp, K., Proof of the Bogoliubov-Parasiuk theorem on renormalization, Commun. Math. Phys., 2, 4, 301-326 (1966) · Zbl 1222.81219
[52] 52.S.Hollands, “Renormalized quantum Yang-Mills fields in curved spacetime,” Rev. Math. Phys.20, 1033-1172 (2008);10.1142/S0129055X08003420e-print arXiv:0705.3340v3 [gr-qc]. · Zbl 1161.81022
[53] Hörmander, L., The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis (2003) · Zbl 1028.35001
[54] Hollands, S.; Wald, R. M., Local Wick polynomials and time ordered products of quantum fields in curved spacetime, Commun. Math. Phys., 223, 2, 289-326 (2001) · Zbl 1059.81138
[55] Hollands, S.; Wald, R. M., Existence of local covariant time ordered products of quantum fields in curved spacetime, Commun. Math. Phys., 231, 2, 309-345 (2002) · Zbl 1015.81043
[56] Hollands, S.; Wald, R. M., On the renormalization group in curved spacetime, Commun. Math. Phys., 237, 1-2, 123-160 (2003) · Zbl 1059.81138
[57] Joni, S. A.; Rota, G.-C.; Morris, R., Coalgebras and bialgebras in combinatorics, Umbral Calculus and Hopf Algebras, 6, 1 (1982) · Zbl 0491.05021
[58] Kastler, D.; Longo, R., Connes-Moscovici-Kreimer Hopf Algebras, Mathematical Physics in Mathematics and Physics: Quantum and Operator Algebraic Aspects, 30 (2000) · Zbl 1025.16019
[59] 59.K. J.Keller, “Dimensional regularization in position space and a forest formula for regularized Epstein-Glaser renormalization,” Ph.D. thesis (Hamburg University, 2010);e-print arXiv:1006.2148. · Zbl 1309.81173
[60] Keller, G.; Kopper, C., Perturbative renormalization of QED via flow equations, Phys. Lett. B, 273, 323-332 (1991)
[61] Keller, G.; Kopper, C., Perturbative renormalization of composite operators via flow equations. I, Commun. Math. Phys., 148, 445-467 (1992) · Zbl 0755.60100
[62] Keller, G.; Kopper, C., Perturbative renormalization of composite operators via flow equations. II. Short distance expansion, Commun. Math. Phys., 153, 245-276 (1993) · Zbl 0793.47061
[63] Keller, G.; Kopper, C.; Salmhofer, M., Perturbative renormalization and effective Lagrangians in \(<mml:math display=''inline`` overflow=''scroll``> \), Helv. Phys. Acta, 65, 32-52 (1992)
[64] Kreimer, D., On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys., 2, 303-334 (1998) · Zbl 1041.81087
[65] Lang, S., Complex Analysis (1999)
[66] Neeb, K.-H., Monastir Summer School: Infinite-Dimensional Lie Groups (2005)
[67] Nikolov, N. M.; Stora, R.; Todorov, I., Renormalization of massless Feynman amplitudes in configuration space, Rev. Math. Phys., 26, 4, 1430002 (2014) · Zbl 1303.81126
[68] Pinter, G., The Hopf algebra structure of Connes and Kreimer in Epstein-Glaser renormalization, Lett. Math. Phys., 54, 3, 227-233 (2000) · Zbl 1017.81028
[69] 69.G.Pinter, “Finite renormalizations in the Epstein Glaser framework and renormalization of the s-matrix of ϕ^4-theory,” Ann. Phys.10, 333-363 (2001);10.1002/1521-3889(200104)10:4<333::AID-ANDP333>3.0.CO;2-Qe-print arXiv:hep-th/9911063v3. · Zbl 1014.81042
[70] Polchinski, J., Renormalization and effective Lagrangians, Nucl. Phys. B, 231, 269-295 (1984)
[71] Popineau, G. and Stora, R., “A pedagogical remark on the main theorem of perturbative renormalization theory,” unpublished notes (1982). · Zbl 1349.81142
[72] Rosen, L.; Wright, J. D., Dimensional regularization and renormalization of QED, Commun. Math. Phys., 134, 433-466 (1990) · Zbl 0719.58043
[73] Scharf, G., Finite Quantum Electrodynamics (1989) · Zbl 0844.53052
[74] Speer, E. R., On the structure of analytic renormalization, Commun. Math. Phys., 23, 23-36 (1971) · Zbl 0225.46041
[75] Stückelberg, E. C. G.; Rivier, D., A propos des divergences en théorie des champs quantifiés, Helv. Phys. Acta, 23, Suppl. III, 236-239 (1950) · Zbl 0038.40703
[76] Steinmann, O., Perturbation Expansions in Axiomatic Field Theory, 11 (1971)
[77] Stora, R., “Differential Algebras in Lagrangian Field Theory,” unpublished lecture notes, ETH Zürich (1993).
[78] ’T Hooft, G.; Veltman, M., Regularization and renormalization of gauge fields, Nucl. Phys. B, 44, 1, 189-213 (1972)
[79] Velo, G.; Wightman, A. S., Renormalization theory, Proceedings of the NATO Advanced Study Institute held at the International School of Mathematical Physics at the “Ettore Majorana” Centre for Scientific Culture in Erice (Sicily) Italy, Dordrecht; Boston, 17-31 August 1975 (1976)
[80] Wightman, A. S.; Gårding, L., Fields as operator-valued distributions in relativistic quantum theory, Ark. Fys., 28, 13, 129-184 (1964) · Zbl 0138.45401
[81] Zimmermann, W., Convergence of Bogoliubov’s method of renormalization in momentum space, Commun. Math. Phys., 15, 3, 208-234 (1969) · Zbl 0192.61203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.