Natural \(T\)-functions on the cotangent bundle of a Weil bundle. (English) Zbl 1080.58001

Summary: A natural \(T\)-function on a natural bundle \(F\) is a natural operator transforming vector fields on a manifold \(M\) into functions on \(FM\). For any Weil algebra \(A\) satisfying \(\dim M \geq \text{width} (A)+1\) we determine all natural \(T\)-functions on \(T^*T^AM\), the cotangent bundle to a Weil bundle \(T^AM\).


58A05 Differentiable manifolds, foundations
58A20 Jets in global analysis
Full Text: DOI EuDML


[1] R. J. Alonso: Jet manifold associated to a Weil bundle. Arch. Math. 36 (2000), 195-199. · Zbl 1049.58007
[2] I. Kolář: Covariant approach to natural transformations of Weil functors. Comm. Math. Univ. Carolin. 27 (1986), 723-729. · Zbl 0603.58001
[3] I. Kolář: On cotagent bundles of some natural bundles. Rend. Circ. Mat. Palermo. Serie II 37 (1994), 115-120. · Zbl 0839.58007
[4] I. Kolář: On the natural operators on vector fields. Ann. Global Anal. Geometry 6 (1988), 109-117. · Zbl 0678.58003
[5] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry. Springer-Verlag, , 1993. · Zbl 0782.53013
[6] I. Kolář and Z. Radziszewski: Natural transformations of second tangent and cotangent bundles. Czechoslovak Math. J. 38(113) (1988), 274-279. · Zbl 0669.53023
[7] W. M. Mikulski: The natural operators lifting vector fields to generalized higher order tangent bundles. Arch. Math. 36 (2000), 207-212. · Zbl 1049.58010
[8] W. M. Mikulski: The jet prolongations of fibered fibered manifolds and the flow operator. Publ. Math. Debrecen 59 (2000), 441-458. · Zbl 0996.58002
[9] W. M. Mikulski: The natural operators lifting vector fields to \((J^r T^* )^*\). Arch. Math. 36 (2000), 255-260. · Zbl 1049.58011
[10] M. Modugno and G. Stefani: Some results on second tangent and cotangent spaces. Quaderni dell’Università di Lecce (1978), .
[11] F. J. Muriel, J. Munoz and J. Rodriguez: Weil bundles and jet spaces. Arch. Math. · Zbl 1079.58500
[12] J. Tomáš: Natural operators on vector fields on the cotangent bundles of the bundles of \((k,r)\)-velocities. Rend. Circ. Mat. Palermo II-54 (1998), 113-124. · Zbl 0929.58001
[13] J. Tomáš: Natural \(T\)-functions on the cotangent bundles bundles of some Weil bundles. Differential Geometry and Applications. Proc. of the Satellite Conf. of ICM in Berlin, Brno, August 10-14, 1998, 1998, pp. 293-302. · Zbl 0945.58003
[14] J. Tomáš: On quasijet bundles. Rend. Circ. Mat. Palermo. Serie II 63 (2000), 187-196. · Zbl 0971.58003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.