Brzeźniak, Zdzisław; Gołdys, Ben; Ondreját, Martin; Rana, Nimit Large deviations for (1 + 1)-dimensional stochastic geometric wave equation. (English) Zbl 07514718 J. Differ. Equations 325, 1-69 (2022). MSC: 60H10 58D20 34G20 46E35 35R15 46E50 PDF BibTeX XML Cite \textit{Z. Brzeźniak} et al., J. Differ. Equations 325, 1--69 (2022; Zbl 07514718) Full Text: DOI OpenURL
Millet, Annie; Sanz-Solé, Marta Global solutions to stochastic wave equations with superlinear coefficients. (English) Zbl 1475.60124 Stochastic Processes Appl. 139, 175-211 (2021). Reviewer: Udhayakumar Ramalingam (Vellore) MSC: 60H15 60G60 35R60 60G17 35L05 PDF BibTeX XML Cite \textit{A. Millet} and \textit{M. Sanz-Solé}, Stochastic Processes Appl. 139, 175--211 (2021; Zbl 1475.60124) Full Text: DOI arXiv OpenURL
Slavík, Jakub Attractors for stochastic reaction-diffusion equation with additive homogeneous noise. (English) Zbl 07332705 Czech. Math. J. 71, No. 1, 21-43 (2021). MSC: 35B41 60H15 37L55 35K57 PDF BibTeX XML Cite \textit{J. Slavík}, Czech. Math. J. 71, No. 1, 21--43 (2021; Zbl 07332705) Full Text: DOI OpenURL
Leszczyński, Henryk; Wrzosek, Monika Newton’s method for nonlinear stochastic wave equations. (English) Zbl 1434.60161 Forum Math. 32, No. 3, 595-605 (2020). MSC: 60H15 35R60 35R10 65C30 PDF BibTeX XML Cite \textit{H. Leszczyński} and \textit{M. Wrzosek}, Forum Math. 32, No. 3, 595--605 (2020; Zbl 1434.60161) Full Text: DOI OpenURL
Borodin, Alexei; Gorin, Vadim A stochastic telegraph equation from the six-vertex model. (English) Zbl 1458.60056 Ann. Probab. 47, No. 6, 4137-4194 (2019). Reviewer: Dejun Luo (Beijing) MSC: 60G60 60H15 35R60 82B20 PDF BibTeX XML Cite \textit{A. Borodin} and \textit{V. Gorin}, Ann. Probab. 47, No. 6, 4137--4194 (2019; Zbl 1458.60056) Full Text: DOI arXiv Euclid OpenURL
Helin, Tapio; Lassas, Matti; Oksanen, L.; Saksala, Teemu Correlation based passive imaging with a white noise source. (English. French summary) Zbl 1401.35343 J. Math. Pures Appl. (9) 116, 132-160 (2018). Reviewer: Alain Brillard (Riedisheim) MSC: 35R30 35R60 53C22 35L15 53C65 PDF BibTeX XML Cite \textit{T. Helin} et al., J. Math. Pures Appl. (9) 116, 132--160 (2018; Zbl 1401.35343) Full Text: DOI arXiv OpenURL
Cerrai, Sandra; Freidlin, Mark; Salins, Michael On the Smoluchowski-Kramers approximation for SPDEs and its interplay with large deviations and long time behavior. (English) Zbl 1355.60083 Discrete Contin. Dyn. Syst. 37, No. 1, 33-76 (2017). MSC: 60H15 60F10 35L71 35K57 PDF BibTeX XML Cite \textit{S. Cerrai} et al., Discrete Contin. Dyn. Syst. 37, No. 1, 33--76 (2017; Zbl 1355.60083) Full Text: DOI arXiv OpenURL
Brzeźniak, Zdzisław; Ondreját, Martin; Seidler, Jan Invariant measures for stochastic nonlinear beam and wave equations. (English) Zbl 1338.35419 J. Differ. Equations 260, No. 5, 4157-4179 (2016). Reviewer: Ruhollah Jahanipur (Kashan) MSC: 35Q74 60H15 74K10 35R60 47D07 37L40 PDF BibTeX XML Cite \textit{Z. Brzeźniak} et al., J. Differ. Equations 260, No. 5, 4157--4179 (2016; Zbl 1338.35419) Full Text: DOI OpenURL
Baňas, Ľubomír; Brzeźniak, Zdzisław; Neklyudov, Mikhail; Ondreját, Martin; Prohl, Andreas Ergodicity for a stochastic geodesic equation in the tangent bundle of the 2D sphere. (English) Zbl 1363.58015 Czech. Math. J. 65, No. 3, 617-657 (2015). Reviewer: Jean Picard (Aubière) MSC: 58J65 60J60 60H35 37A25 60H10 65C30 65C20 60H15 PDF BibTeX XML Cite \textit{Ľ. Baňas} et al., Czech. Math. J. 65, No. 3, 617--657 (2015; Zbl 1363.58015) Full Text: DOI arXiv Link OpenURL
Taniguchi, Takeshi Explosion of solutions to nonlinear stochastic wave equations with multiplicative noise. (English) Zbl 1328.60153 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 117, 47-64 (2015). MSC: 60H15 35R60 35L05 35L70 PDF BibTeX XML Cite \textit{T. Taniguchi}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 117, 47--64 (2015; Zbl 1328.60153) Full Text: DOI OpenURL
Brzeźniak, Zdzisław; Ondreját, Martin Stochastic geometric wave equations with values in compact Riemannian homogeneous spaces. (English) Zbl 1286.60058 Ann. Probab. 41, No. 3B, 1938-1977 (2013). Reviewer: Isamu Dôku (Saitama) MSC: 60H15 35R60 58J65 35L05 PDF BibTeX XML Cite \textit{Z. Brzeźniak} and \textit{M. Ondreját}, Ann. Probab. 41, No. 3B, 1938--1977 (2013; Zbl 1286.60058) Full Text: DOI arXiv Euclid OpenURL
Brzeźniak, Z.; Ondreját, M. Weak solutions to stochastic wave equations with values in Riemannian manifolds. (English) Zbl 1238.60073 Commun. Partial Differ. Equations 36, No. 7-9, 1624-1653 (2011). Reviewer: Maria Gordina (Storrs) MSC: 60H15 35R60 58J65 58E20 35L70 PDF BibTeX XML Cite \textit{Z. Brzeźniak} and \textit{M. Ondreját}, Commun. Partial Differ. Equations 36, No. 7--9, 1624--1653 (2011; Zbl 1238.60073) Full Text: DOI OpenURL
Ondreját, Martin Stochastic wave equation with critical nonlinearities: temporal regularity and uniqueness. (English) Zbl 1201.60066 J. Differ. Equations 248, No. 7, 1579-1602 (2010). Reviewer: Michael Stauch (Berlin) MSC: 60H15 PDF BibTeX XML Cite \textit{M. Ondreját}, J. Differ. Equations 248, No. 7, 1579--1602 (2010; Zbl 1201.60066) Full Text: DOI OpenURL
Brzeźniak, Zdzisław; Ondreját, Martin Strong solutions to stochastic wave equations with values in Riemannian manifolds. (English) Zbl 1141.58019 J. Funct. Anal. 253, No. 2, 449-481 (2007). Reviewer: Raouf Ghomrasni (Johannesburg) MSC: 58J65 60H15 PDF BibTeX XML Cite \textit{Z. Brzeźniak} and \textit{M. Ondreját}, J. Funct. Anal. 253, No. 2, 449--481 (2007; Zbl 1141.58019) Full Text: DOI OpenURL
Ondreját, Martin Uniqueness for stochastic non-linear wave equations. (English) Zbl 1135.60040 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 12, 3287-3310 (2007). Reviewer: Dirk Blömker (Augsburg) MSC: 60H15 35R60 PDF BibTeX XML Cite \textit{M. Ondreját}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67, No. 12, 3287--3310 (2007; Zbl 1135.60040) Full Text: DOI OpenURL
Chow, Pao-Liu Asymptotics of solutions to semilinear stochastic wave equations. (English) Zbl 1126.60051 Ann. Appl. Probab. 16, No. 2, 757-789 (2006). Reviewer: Dirk Blömker (Augsburg) MSC: 60H15 60H05 PDF BibTeX XML Cite \textit{P.-L. Chow}, Ann. Appl. Probab. 16, No. 2, 757--789 (2006; Zbl 1126.60051) Full Text: DOI arXiv OpenURL
Cerrai, Sandra; Freidlin, Mark On the Smoluchowski-Kramers approximation for a system with an infinite number of degrees of freedom. (English) Zbl 1093.60036 Probab. Theory Relat. Fields 135, No. 3, 363-394 (2006). MSC: 60H15 PDF BibTeX XML Cite \textit{S. Cerrai} and \textit{M. Freidlin}, Probab. Theory Relat. Fields 135, No. 3, 363--394 (2006; Zbl 1093.60036) Full Text: DOI OpenURL