Li, Yun-Zhang; Dong, Jian Duality relations associated with weak \(g\)-R-duals. (English) Zbl 07638893 Linear Multilinear Algebra 70, No. 20, 5482-5501 (2022). MSC: 42C15 PDF BibTeX XML Cite \textit{Y.-Z. Li} and \textit{J. Dong}, Linear Multilinear Algebra 70, No. 20, 5482--5501 (2022; Zbl 07638893) Full Text: DOI OpenURL
Zhang, Xiao-Li; Li, Yun-Zhang Portraits and perturbations of Hilbert-Schmidt frame sequences. (English) Zbl 07610167 Bull. Malays. Math. Sci. Soc. (2) 45, No. 6, 3197-3223 (2022). Reviewer: Ghanshyam Bhatt (Nashville) MSC: 42C15 46B15 PDF BibTeX XML Cite \textit{X.-L. Zhang} and \textit{Y.-Z. Li}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 6, 3197--3223 (2022; Zbl 07610167) Full Text: DOI OpenURL
Deepshikha Equivalence relations and distances between generalized frames. (English) Zbl 1498.42047 J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 47, 19 p. (2022). Reviewer: Bujar Fejzullahu (Presevo) MSC: 42C15 42C30 42C40 46C05 PDF BibTeX XML Cite \textit{Deepshikha}, J. Pseudo-Differ. Oper. Appl. 13, No. 4, Paper No. 47, 19 p. (2022; Zbl 1498.42047) Full Text: DOI OpenURL
Zhang, Xiao-Li; Li, Yun-Zhang Near Riesz and Besselian Hilbert-Schmidt operator sequences. (English) Zbl 07579729 Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 4, Article ID 2250006, 16 p. (2022). Reviewer: Paşc Găvruţă (Timişoara) MSC: 42C15 PDF BibTeX XML Cite \textit{X.-L. Zhang} and \textit{Y.-Z. Li}, Int. J. Wavelets Multiresolut. Inf. Process. 20, No. 4, Article ID 2250006, 16 p. (2022; Zbl 07579729) Full Text: DOI OpenURL
Movahed, Sima; Ledari, Alireza Ahmadi; Giv, Hossein Hosseini \(\epsilon\)-approximations and dynamical representations of Hilbert-Schmidt frames. (English) Zbl 07579523 Mediterr. J. Math. 19, No. 4, Paper No. 186, 17 p. (2022). Reviewer: Antonio Galbis (Valencia) MSC: 42C15 46C50 PDF BibTeX XML Cite \textit{S. Movahed} et al., Mediterr. J. Math. 19, No. 4, Paper No. 186, 17 p. (2022; Zbl 07579523) Full Text: DOI OpenURL
Li, Yun-Zhang; Zhang, Xiao-Li Dilations of (dual) Hilbert-Schmidt frames. (English) Zbl 1489.42019 Ann. Funct. Anal. 13, No. 3, Paper No. 35, 20 p. (2022). Reviewer: Pierluigi Vellucci (Roma) MSC: 42C15 41A58 46C05 PDF BibTeX XML Cite \textit{Y.-Z. Li} and \textit{X.-L. Zhang}, Ann. Funct. Anal. 13, No. 3, Paper No. 35, 20 p. (2022; Zbl 1489.42019) Full Text: DOI OpenURL
Xiang, Zhong-Qi New inequalities of \(K\)-g-frames in submodules. (English) Zbl 1495.46050 Bull. Iran. Math. Soc. 48, No. 2, 627-641 (2022). MSC: 46L08 42C15 46L05 PDF BibTeX XML Cite \textit{Z.-Q. Xiang}, Bull. Iran. Math. Soc. 48, No. 2, 627--641 (2022; Zbl 1495.46050) Full Text: DOI OpenURL
Deepshikha; Samanta, Aniruddha On weaving generalized frames and generalized Riesz bases. (English) Zbl 1480.42040 Bull. Malays. Math. Sci. Soc. (2) 45, No. 1, 361-378 (2022). MSC: 42C15 42C30 42C40 94A12 PDF BibTeX XML Cite \textit{Deepshikha} and \textit{A. Samanta}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 1, 361--378 (2022; Zbl 1480.42040) Full Text: DOI arXiv OpenURL
Krishna, K. Mahesh; Johnson, P. Sam Factorable weak operator-valued frames. (English) Zbl 07450623 Ann. Funct. Anal. 13, No. 1, Paper No. 11, 36 p. (2022). MSC: 42C15 47A13 PDF BibTeX XML Cite \textit{K. M. Krishna} and \textit{P. S. Johnson}, Ann. Funct. Anal. 13, No. 1, Paper No. 11, 36 p. (2022; Zbl 07450623) Full Text: DOI arXiv OpenURL
Kamuda, Alan; Kużel, Sergiusz On description of dual frames. (English) Zbl 1489.46018 Appl. Comput. Harmon. Anal. 56, 351-366 (2022). MSC: 46B15 42C15 PDF BibTeX XML Cite \textit{A. Kamuda} and \textit{S. Kużel}, Appl. Comput. Harmon. Anal. 56, 351--366 (2022; Zbl 1489.46018) Full Text: DOI arXiv OpenURL
Ismailov, M. I.; Jafarova, S. I. Uncountable \(k\)-Bessel and \(k\)-Hilbert systems in nonseparable Banach spaces. (English) Zbl 07633968 Bull. Math. Anal. Appl. 13, No. 1, 57-70 (2021). Reviewer: Ashok Kumar Sah (New Delhi) MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{M. I. Ismailov} and \textit{S. I. Jafarova}, Bull. Math. Anal. Appl. 13, No. 1, 57--70 (2021; Zbl 07633968) Full Text: Link OpenURL
Namboothiri, N. M. Madhavan; Nambudiri, T. C. Easwaran; Thomas, Jineesh Frame operators and semi-frame operators of finite Gabor frames. (English) Zbl 07595702 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 28, No. 4, 315-328 (2021). Reviewer: Richard A. Zalik (Auburn) MSC: 42C15 47B90 94A12 PDF BibTeX XML Cite \textit{N. M. M. Namboothiri} et al., J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 28, No. 4, 315--328 (2021; Zbl 07595702) Full Text: DOI OpenURL
Ahmadi, Ahmad; Rahimi, Asghar Scalability of \(G\)-frames by diagonal operators. (English) Zbl 1490.42030 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 47, No. 2, 215-225 (2021). Reviewer: Morteza Mirzaee Azandaryani (Qom) MSC: 42C15 PDF BibTeX XML Cite \textit{A. Ahmadi} and \textit{A. Rahimi}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 47, No. 2, 215--225 (2021; Zbl 1490.42030) Full Text: DOI OpenURL
Li, Ya-Nan; Li, Yun-Zhang Hilbert-Schmidt frames and their duals. (English) Zbl 1481.42039 Int. J. Wavelets Multiresolut. Inf. Process. 19, No. 5, Article ID 2150011, 15 p. (2021). MSC: 42C15 46C50 47A58 46B15 PDF BibTeX XML Cite \textit{Y.-N. Li} and \textit{Y.-Z. Li}, Int. J. Wavelets Multiresolut. Inf. Process. 19, No. 5, Article ID 2150011, 15 p. (2021; Zbl 1481.42039) Full Text: DOI OpenURL
Zhao, Xin; Li, Pengtong Weaving frames in Hilbert \(C^\ast\)-modules. (English) Zbl 1477.46067 J. Math. 2021, Article ID 2228397, 13 p. (2021). MSC: 46L08 46L05 42C15 42C40 PDF BibTeX XML Cite \textit{X. Zhao} and \textit{P. Li}, J. Math. 2021, Article ID 2228397, 13 p. (2021; Zbl 1477.46067) Full Text: DOI OpenURL
Fu, Yanling; Zhang, Wei Operator characterizations and constructions of continuous g-frames in Hilbert spaces. (English) Zbl 07394500 Linear Multilinear Algebra 69, No. 12, 2324-2339 (2021). MSC: 42C15 41A58 PDF BibTeX XML Cite \textit{Y. Fu} and \textit{W. Zhang}, Linear Multilinear Algebra 69, No. 12, 2324--2339 (2021; Zbl 07394500) Full Text: DOI OpenURL
Rajput, Ekta; Sahu, Nabin Kumar; Mishra, Vishnu Narayan Woven \(g\)-frames in Hilbert \(C^*\)-modules. (English) Zbl 07381370 Korean J. Math. 29, No. 1, 41-55 (2021). MSC: 42C15 46B15 PDF BibTeX XML Cite \textit{E. Rajput} et al., Korean J. Math. 29, No. 1, 41--55 (2021; Zbl 07381370) Full Text: DOI OpenURL
Hasankhani Fard, Mohammad Ali; Moazeni, Saeedeh Signal reconstruction without phase by norm retrievable frames. (English) Zbl 1470.94043 Linear Multilinear Algebra 69, No. 8, 1484-1499 (2021). MSC: 94A12 42C15 42C40 46B15 PDF BibTeX XML Cite \textit{M. A. Hasankhani Fard} and \textit{S. Moazeni}, Linear Multilinear Algebra 69, No. 8, 1484--1499 (2021; Zbl 1470.94043) Full Text: DOI OpenURL
Tabadkan, Gholamreza Abbaspour; Hosseinnezhad, Hessam Invertibility of generalized Bessel multipliers in Hilbert \(C^\ast\)-modules. (English) Zbl 1467.42050 Bull. Korean Math. Soc. 58, No. 2, 461-479 (2021). Reviewer: Virender Dalal (Delhi) MSC: 42C15 46L08 46B15 PDF BibTeX XML Cite \textit{G. A. Tabadkan} and \textit{H. Hosseinnezhad}, Bull. Korean Math. Soc. 58, No. 2, 461--479 (2021; Zbl 1467.42050) Full Text: DOI arXiv OpenURL
Li, Ya-Nan; Li, Yun-Zhang Making and sharing \(K\)-dual frame pairs. (English) Zbl 1461.42022 Numer. Funct. Anal. Optim. 42, No. 2, 155-179 (2021). MSC: 42C15 41A58 47B38 PDF BibTeX XML Cite \textit{Y.-N. Li} and \textit{Y.-Z. Li}, Numer. Funct. Anal. Optim. 42, No. 2, 155--179 (2021; Zbl 1461.42022) Full Text: DOI OpenURL
Li, Yun-Zhang; Li, Ya-Nan Constructing more \(K\)-frames. (English) Zbl 1460.42050 Linear Algebra Appl. 616, 45-65 (2021). Reviewer: Devendra Kumar (Al-Baha) MSC: 42C15 PDF BibTeX XML Cite \textit{Y.-Z. Li} and \textit{Y.-N. Li}, Linear Algebra Appl. 616, 45--65 (2021; Zbl 1460.42050) Full Text: DOI OpenURL
Guo, Qianping; Leng, Jingsong; Li, Houbiao Construct approximate dual g-frames in Hilbert spaces. (English) Zbl 1459.42043 Linear Multilinear Algebra 69, No. 2, 245-258 (2021). MSC: 42C15 47B38 41A58 PDF BibTeX XML Cite \textit{Q. Guo} et al., Linear Multilinear Algebra 69, No. 2, 245--258 (2021; Zbl 1459.42043) Full Text: DOI OpenURL
Choubin, Mehdi; Ghaemi, Mohammad Bagher; Kim, Gwang Hui Hilbert-Schmidt frames: duality, weaving and stability. (English) Zbl 07569297 Int. J. Nonlinear Anal. Appl. 11, No. 1, 159-173 (2020). MSC: 46C50 42C15 PDF BibTeX XML Cite \textit{M. Choubin} et al., Int. J. Nonlinear Anal. Appl. 11, No. 1, 159--173 (2020; Zbl 07569297) Full Text: DOI OpenURL
Hussain, Tufail; Li, Yun-Zhang The equivalence of \(F_a\)-frames. (English) Zbl 07460834 J. Inequal. Appl. 2020, Paper No. 59, 14 p. (2020). MSC: 42C15 42C40 47A80 PDF BibTeX XML Cite \textit{T. Hussain} and \textit{Y.-Z. Li}, J. Inequal. Appl. 2020, Paper No. 59, 14 p. (2020; Zbl 07460834) Full Text: DOI OpenURL
Shekhar, Chander; Bhati, Sunayana; Rathore, G. S. Generalized continuous frames for operators. (English) Zbl 1474.42133 Sahand Commun. Math. Anal. 17, No. 2, 185-201 (2020). MSC: 42C15 42C05 PDF BibTeX XML Cite \textit{C. Shekhar} et al., Sahand Commun. Math. Anal. 17, No. 2, 185--201 (2020; Zbl 1474.42133) Full Text: DOI OpenURL
Thomas, Jineesh; Madhavan Namboothiri, N. M.; Varghese, Eldo Gabor frames in \(l^2 (\mathbb Z)\) from Gabor frames in \(L^2 (\mathbb{R})\). (English) Zbl 1457.42048 Korean J. Math. 28, No. 4, 877-888 (2020). MSC: 42C15 47B90 94A12 PDF BibTeX XML Cite \textit{J. Thomas} et al., Korean J. Math. 28, No. 4, 877--888 (2020; Zbl 1457.42048) Full Text: DOI OpenURL
Sedghi Moghaddam, J.; Najati, A.; Ghobadzadeh, F. \((F,G)\)-operator frames for \(\mathcal{L}(\mathcal{H,K})\). (English) Zbl 1454.42030 Int. J. Wavelets Multiresolut. Inf. Process. 18, No. 5, Article ID 2050031, 25 p. (2020). Reviewer: Devendra Kumar (Al-Baha) MSC: 42C15 46L08 PDF BibTeX XML Cite \textit{J. Sedghi Moghaddam} et al., Int. J. Wavelets Multiresolut. Inf. Process. 18, No. 5, Article ID 2050031, 25 p. (2020; Zbl 1454.42030) Full Text: DOI OpenURL
Li, Dongwei; Leng, Jinsong Operator representations of \(g\)-frames in Hilbert spaces. (English) Zbl 1448.42036 Linear Multilinear Algebra 68, No. 9, 1861-1877 (2020). MSC: 42C15 47B99 PDF BibTeX XML Cite \textit{D. Li} and \textit{J. Leng}, Linear Multilinear Algebra 68, No. 9, 1861--1877 (2020; Zbl 1448.42036) Full Text: DOI OpenURL
Li, Dongwei Unconditional convergence constants of \(g\)-frame expansions. (English) Zbl 1446.42044 Int. J. Wavelets Multiresolut. Inf. Process. 18, No. 4, Article ID 2050022, 15 p. (2020). MSC: 42C15 42C30 PDF BibTeX XML Cite \textit{D. Li}, Int. J. Wavelets Multiresolut. Inf. Process. 18, No. 4, Article ID 2050022, 15 p. (2020; Zbl 1446.42044) Full Text: DOI OpenURL
Bellomonte, Giorgia; Corso, Rosario Frames and weak frames for unbounded operators. (English) Zbl 1439.42041 Adv. Comput. Math. 46, No. 2, Paper No. 38, 21 p. (2020). MSC: 42C15 47A05 47A63 41A65 PDF BibTeX XML Cite \textit{G. Bellomonte} and \textit{R. Corso}, Adv. Comput. Math. 46, No. 2, Paper No. 38, 21 p. (2020; Zbl 1439.42041) Full Text: DOI arXiv OpenURL
Poria, Anirudha Positive weight function and classification of \(g\)-frames. (English) Zbl 1472.42049 Numer. Funct. Anal. Optim. 41, No. 8, 950-968 (2020). Reviewer: Yunzhang Li (Beijing) MSC: 42C15 43A80 PDF BibTeX XML Cite \textit{A. Poria}, Numer. Funct. Anal. Optim. 41, No. 8, 950--968 (2020; Zbl 1472.42049) Full Text: DOI arXiv OpenURL
Li, Dongwei; Leng, Jinsong; Huang, Tingzhu; Li, Xiaoping On weaving g-frames for Hilbert spaces. (English) Zbl 1436.42037 Complex Anal. Oper. Theory 14, No. 2, Paper No. 33, 25 p. (2020). MSC: 42C15 42C30 41A45 PDF BibTeX XML Cite \textit{D. Li} et al., Complex Anal. Oper. Theory 14, No. 2, Paper No. 33, 25 p. (2020; Zbl 1436.42037) Full Text: DOI arXiv OpenURL
García, Antonio G.; Muñoz-Bouzo, María J.; Pérez-Villalón, Gerardo On regular generalized sampling in \(T\)-invariant subspaces of a Hilbert space: an overview. (English) Zbl 1436.42033 Numer. Funct. Anal. Optim. 41, No. 6, 685-709 (2020). MSC: 42C15 94A20 PDF BibTeX XML Cite \textit{A. G. García} et al., Numer. Funct. Anal. Optim. 41, No. 6, 685--709 (2020; Zbl 1436.42033) Full Text: DOI arXiv OpenURL
Li, Yun-Zhang; Li, Ya-Nan The \(K\)-dual Bessel generators for unitary groups of Hilbert spaces. (English) Zbl 1434.42045 J. Math. Anal. Appl. 482, No. 1, Article ID 123548, 16 p. (2020). Reviewer: Antonio Galbis (Valencia) MSC: 42C15 PDF BibTeX XML Cite \textit{Y.-Z. Li} and \textit{Y.-N. Li}, J. Math. Anal. Appl. 482, No. 1, Article ID 123548, 16 p. (2020; Zbl 1434.42045) Full Text: DOI OpenURL
Trapani, Camillo; Triolo, Salvatore; Tschinke, Francesco Distribution frames and bases. (English) Zbl 07077736 J. Fourier Anal. Appl. 25, No. 4, 2109-2140 (2019). MSC: 47A70 42C15 42C30 PDF BibTeX XML Cite \textit{C. Trapani} et al., J. Fourier Anal. Appl. 25, No. 4, 2109--2140 (2019; Zbl 07077736) Full Text: DOI arXiv OpenURL
Rahimi, A.; Samadzadeh, Z.; Daraby, B. Frame-related operators for woven frames. (English) Zbl 1417.42037 Int. J. Wavelets Multiresolut. Inf. Process. 17, No. 3, Article ID 1950010, 15 p. (2019). Reviewer: Virender Dalal (Delhi) MSC: 42C15 42C40 65T60 PDF BibTeX XML Cite \textit{A. Rahimi} et al., Int. J. Wavelets Multiresolut. Inf. Process. 17, No. 3, Article ID 1950010, 15 p. (2019; Zbl 1417.42037) Full Text: DOI arXiv OpenURL
Zhang, Yan; Li, Yun-Zhang \(G\)-frame and Riesz sequences in Hilbert spaces. (English) Zbl 07065340 Numer. Funct. Anal. Optim. 40, No. 11, 1268-1290 (2019). MSC: 42C15 41A58 47B38 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Y.-Z. Li}, Numer. Funct. Anal. Optim. 40, No. 11, 1268--1290 (2019; Zbl 07065340) Full Text: DOI OpenURL
Berger, Peter; Gröchenig, Karlheinz; Matz, Gerald Sampling and reconstruction in distinct subspaces using oblique projections. (English) Zbl 1474.94060 J. Fourier Anal. Appl. 25, No. 3, 1080-1112 (2019). MSC: 94A20 42C15 PDF BibTeX XML Cite \textit{P. Berger} et al., J. Fourier Anal. Appl. 25, No. 3, 1080--1112 (2019; Zbl 1474.94060) Full Text: DOI arXiv OpenURL
Balazs, Peter; Shamsabadi, Mitra; Arefijamaal, Ali Akbar; Rahimi, Asghar \(U\)-cross Gram matrices and their invertibility. (English) Zbl 1410.15064 J. Math. Anal. Appl. 476, No. 2, 367-390 (2019). MSC: 15B99 15A09 42C15 PDF BibTeX XML Cite \textit{P. Balazs} et al., J. Math. Anal. Appl. 476, No. 2, 367--390 (2019; Zbl 1410.15064) Full Text: DOI arXiv OpenURL
Rossafi, Mohamed; Kabbaj, Samir \(\ast\)-g-frames in tensor products of Hilbert \(C^\ast\)-modules. (English) Zbl 1423.42058 Ann. Univ. Paedagog. Crac., Stud. Math. 233(17), 17-25 (2018). MSC: 42C15 46L05 PDF BibTeX XML Cite \textit{M. Rossafi} and \textit{S. Kabbaj}, Ann. Univ. Paedagog. Crac., Stud. Math. 233(17), 17--25 (2018; Zbl 1423.42058) Full Text: DOI arXiv OpenURL
Rashidi-Kouchi, M.; Rahimi, A.; Shah, Firdous A. Duals and multipliers of controlled frames in Hilbert spaces. (English) Zbl 1402.42041 Int. J. Wavelets Multiresolut. Inf. Process. 16, No. 6, Article ID 1850057, 13 p. (2018). Reviewer: Devendra Kumar (Al-Baha) MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{M. Rashidi-Kouchi} et al., Int. J. Wavelets Multiresolut. Inf. Process. 16, No. 6, Article ID 1850057, 13 p. (2018; Zbl 1402.42041) Full Text: DOI OpenURL
Tabadkan, Gholamreza Abbaspour; Hosseinnezhad, Hessam; Rahimi, Asghar Generalized Bessel multipliers in Hilbert spaces. (English) Zbl 1406.42035 Result. Math. 73, No. 2, Paper No. 85, 18 p. (2018). Reviewer: Damir Bakić (Zagreb) MSC: 42C15 46C05 PDF BibTeX XML Cite \textit{G. A. Tabadkan} et al., Result. Math. 73, No. 2, Paper No. 85, 18 p. (2018; Zbl 1406.42035) Full Text: DOI arXiv OpenURL
Li, Dongwei; Leng, Jinsong; Huang, Tingzhu; Sun, Guomin On sum and stability of g-frames in Hilbert spaces. (English) Zbl 1392.42029 Linear Multilinear Algebra 66, No. 8, 1578-1592 (2018). MSC: 42C15 41A58 PDF BibTeX XML Cite \textit{D. Li} et al., Linear Multilinear Algebra 66, No. 8, 1578--1592 (2018; Zbl 1392.42029) Full Text: DOI OpenURL
Javanshiri, Hossein; Choubin, Mehdi Multipliers for von Neumann-Schatten Bessel sequences in separable Banach spaces. (English) Zbl 1400.46019 Linear Algebra Appl. 545, 108-138 (2018). MSC: 46C50 42C15 41A58 47A58 PDF BibTeX XML Cite \textit{H. Javanshiri} and \textit{M. Choubin}, Linear Algebra Appl. 545, 108--138 (2018; Zbl 1400.46019) Full Text: DOI arXiv OpenURL
Velasco, G. A. M.; Dörfler, M. Sampling time-frequency localized functions and constructing localized time-frequency frames. (English) Zbl 1386.94041 Eur. J. Appl. Math. 28, No. 5, 854-876 (2017). MSC: 94A12 PDF BibTeX XML Cite \textit{G. A. M. Velasco} and \textit{M. Dörfler}, Eur. J. Appl. Math. 28, No. 5, 854--876 (2017; Zbl 1386.94041) Full Text: DOI arXiv OpenURL
Xiao, Xiangchun; Zhu, Yucan Exact \(K\)-g-frames in Hilbert spaces. (English) Zbl 1377.42038 Result. Math. 72, No. 3, 1329-1339 (2017). MSC: 42C15 PDF BibTeX XML Cite \textit{X. Xiao} and \textit{Y. Zhu}, Result. Math. 72, No. 3, 1329--1339 (2017; Zbl 1377.42038) Full Text: DOI OpenURL
Poria, Anirudha Approximation of the inverse frame operator and stability of Hilbert-Schmidt frames. (English) Zbl 1376.42044 Mediterr. J. Math. 14, No. 4, Paper No. 153, 22 p. (2017). MSC: 42C15 46C50 47A58 PDF BibTeX XML Cite \textit{A. Poria}, Mediterr. J. Math. 14, No. 4, Paper No. 153, 22 p. (2017; Zbl 1376.42044) Full Text: DOI arXiv OpenURL
Zhou, Jian; Fang, Xianyong; Tao, Liang A sparse analysis window for discrete Gabor transform. (English) Zbl 1371.94552 Circuits Syst. Signal Process. 36, No. 10, 4161-4180 (2017). MSC: 94A12 65T50 PDF BibTeX XML Cite \textit{J. Zhou} et al., Circuits Syst. Signal Process. 36, No. 10, 4161--4180 (2017; Zbl 1371.94552) Full Text: DOI OpenURL
Poria, Anirudha Some identities and inequalities for Hilbert-Schmidt frames. (English) Zbl 1404.42059 Mediterr. J. Math. 14, No. 2, Paper No. 59, 14 p. (2017). Reviewer: Deguang Han (Orlando) MSC: 42C15 94A12 PDF BibTeX XML Cite \textit{A. Poria}, Mediterr. J. Math. 14, No. 2, Paper No. 59, 14 p. (2017; Zbl 1404.42059) Full Text: DOI arXiv OpenURL
Chen, Z. L.; Cao, H. X.; Guo, Z. H. \(C^\ast\)-algebra consisting of all \(g\)-Bessel sequences in a Hilbert space. (English) Zbl 1369.46015 Int. J. Wavelets Multiresolut. Inf. Process. 15, No. 1, Article ID 1750004, 8 p. (2017). MSC: 46B15 42C15 46C05 PDF BibTeX XML Cite \textit{Z. L. Chen} et al., Int. J. Wavelets Multiresolut. Inf. Process. 15, No. 1, Article ID 1750004, 8 p. (2017; Zbl 1369.46015) Full Text: DOI OpenURL
Javanshiri, Hossein; Fattahi, Abdol-Majid Continuous atomic systems for subspaces. (English) Zbl 1348.42037 Mediterr. J. Math. 13, No. 4, 1871-1884 (2016). Reviewer: Morteza Mirzaee Azandaryani (Qom) MSC: 42C15 41A58 PDF BibTeX XML Cite \textit{H. Javanshiri} and \textit{A.-M. Fattahi}, Mediterr. J. Math. 13, No. 4, 1871--1884 (2016; Zbl 1348.42037) Full Text: DOI OpenURL
Atreas, Nikolaos D.; Papadakis, Manos; Stavropoulos, Theodoros Extension principles for dual multiwavelet frames of \(L_2(\mathbb R^s)\) constructed from multirefinable generators. (English) Zbl 1348.42030 J. Fourier Anal. Appl. 22, No. 4, 854-877 (2016). Reviewer: Peter Massopust (München) MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{N. D. Atreas} et al., J. Fourier Anal. Appl. 22, No. 4, 854--877 (2016; Zbl 1348.42030) Full Text: DOI OpenURL
Arefijamaal, Ali Akbar; Sadeghi, Ghadir Von Neumann-Schatten dual frames and their perturbations. (English) Zbl 1346.46008 Result. Math. 69, No. 3-4, 431-441 (2016). Reviewer: Lalit Kumar Vashisht (Delhi) MSC: 46B15 42C15 PDF BibTeX XML Cite \textit{A. A. Arefijamaal} and \textit{G. Sadeghi}, Result. Math. 69, No. 3--4, 431--441 (2016; Zbl 1346.46008) Full Text: DOI OpenURL
Bilalov, Bilal; Guliyeva, Fatima \(t\)-frames and their Noetherian perturbation. (English) Zbl 1330.42016 Complex Anal. Oper. Theory 9, No. 7, 1609-1631 (2015). Reviewer: Elena Lebedeva (Saint Petersburg) MSC: 42C15 46A32 PDF BibTeX XML Cite \textit{B. Bilalov} and \textit{F. Guliyeva}, Complex Anal. Oper. Theory 9, No. 7, 1609--1631 (2015; Zbl 1330.42016) Full Text: DOI OpenURL
Guo, Xunxiang Decompositions of \(g\)-frames and duals and pseudoduals of \(g\)-frames in Hilbert spaces. (English) Zbl 1339.46009 J. Funct. Spaces 2015, Article ID 305961, 7 p. (2015). MSC: 46B15 42C15 PDF BibTeX XML Cite \textit{X. Guo}, J. Funct. Spaces 2015, Article ID 305961, 7 p. (2015; Zbl 1339.46009) Full Text: DOI OpenURL
Fernández-Morales, H. R.; García, A. G.; Hernández-Medina, M. A.; Muñoz-Bouzo, M. J. Generalized sampling: from shift-invariant to U-invariant spaces. (English) Zbl 1311.42078 Anal. Appl., Singap. 13, No. 3, 303-329 (2015). MSC: 42C15 94A20 PDF BibTeX XML Cite \textit{H. R. Fernández-Morales} et al., Anal. Appl., Singap. 13, No. 3, 303--329 (2015; Zbl 1311.42078) Full Text: DOI OpenURL
Han, Deguang; Larson, David R.; Liu, Bei; Liu, Rui Operator-valued measures, dilations, and the theory of frames. (English) Zbl 1323.46031 Mem. Am. Math. Soc. 1075, viii, 84 p. (2014). Reviewer: Joseph Lakey (Las Cruces) MSC: 46G10 46L07 46L10 46L51 47A20 42C15 46B15 46B25 47B48 PDF BibTeX XML Cite \textit{D. Han} et al., Operator-valued measures, dilations, and the theory of frames. Providence, RI: American Mathematical Society (AMS) (2014; Zbl 1323.46031) Full Text: DOI arXiv OpenURL
Asgari, Mohammad Sadegh; Rahimi, Hamidreza Generalized frames for operators in Hilbert spaces. (English) Zbl 1294.41023 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17, No. 2, Article ID 1450013, 20 p. (2014). MSC: 41A58 42C15 42C40 46C05 PDF BibTeX XML Cite \textit{M. S. Asgari} and \textit{H. Rahimi}, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 17, No. 2, Article ID 1450013, 20 p. (2014; Zbl 1294.41023) Full Text: DOI OpenURL
Atreas, Nikolaos; Melas, Antonios; Stavropoulos, Theodoros Affine dual frames and extension principles. (English) Zbl 1294.42004 Appl. Comput. Harmon. Anal. 36, No. 1, 51-62 (2014). MSC: 42C15 PDF BibTeX XML Cite \textit{N. Atreas} et al., Appl. Comput. Harmon. Anal. 36, No. 1, 51--62 (2014; Zbl 1294.42004) Full Text: DOI OpenURL
Fernández-Morales, H. R.; García, A. G.; Hernández-Medina, M. A.; Muñoz-Bouzo, M. J. On some sampling-related frames in \(U\)-invariant spaces. (English) Zbl 1470.94066 Abstr. Appl. Anal. 2013, Article ID 761620, 14 p. (2013). MSC: 94A20 42C15 PDF BibTeX XML Cite \textit{H. R. Fernández-Morales} et al., Abstr. Appl. Anal. 2013, Article ID 761620, 14 p. (2013; Zbl 1470.94066) Full Text: DOI OpenURL
Zhou, Fengying; Li, Yunzhang Generalized multiresolution structures in reducing subspaces of \(L^2(\mathbb R^d)\). (English) Zbl 1279.42046 Sci. China, Math. 56, No. 3, 619-638 (2013). Reviewer: Hrvoje Šikić (Zagreb) MSC: 42C40 42C15 PDF BibTeX XML Cite \textit{F. Zhou} and \textit{Y. Li}, Sci. China, Math. 56, No. 3, 619--638 (2013; Zbl 1279.42046) Full Text: DOI OpenURL
Xiao, Xiang-Chun; Zhu, Yu-Can; Zeng, Xiao-Ming Oblique dual frames in finite-dimensional Hilbert spaces. (English) Zbl 1268.42066 Int. J. Wavelets Multiresolut. Inf. Process. 11, No. 2, Article ID 1350011, 14 p. (2013). MSC: 42C15 PDF BibTeX XML Cite \textit{X.-C. Xiao} et al., Int. J. Wavelets Multiresolut. Inf. Process. 11, No. 2, Article ID 1350011, 14 p. (2013; Zbl 1268.42066) Full Text: DOI OpenURL
Lian, Qiao-Fang; Li, Yun-Zhang Super oblique Gabor duals of super Gabor frames on discrete periodic sets. (English) Zbl 1263.42012 Numer. Funct. Anal. Optim. 34, No. 3, 284-322 (2013). Reviewer: Demetrio Labate (Houston) MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{Q.-F. Lian} and \textit{Y.-Z. Li}, Numer. Funct. Anal. Optim. 34, No. 3, 284--322 (2013; Zbl 1263.42012) Full Text: DOI OpenURL
Li, Chun-Yan Operator frames for Banach spaces. (English) Zbl 1278.42039 Complex Anal. Oper. Theory 6, No. 1, 1-21 (2012). Reviewer: Jakob Lemvig (Kgs. Lyngby) MSC: 42C15 46C99 46B28 46B15 47A05 PDF BibTeX XML Cite \textit{C.-Y. Li}, Complex Anal. Oper. Theory 6, No. 1, 1--21 (2012; Zbl 1278.42039) Full Text: DOI OpenURL
Cahill, Jameson; Li, Shidong Dimension invariance of finite frames of translates and Gabor frames. (English) Zbl 1254.42039 Adv. Comput. Math. 37, No. 4, 505-520 (2012). MSC: 42C15 46C05 47B10 PDF BibTeX XML Cite \textit{J. Cahill} and \textit{S. Li}, Adv. Comput. Math. 37, No. 4, 505--520 (2012; Zbl 1254.42039) Full Text: DOI OpenURL
Sadeghi, Ghadir; Arefijamaal, Aliakbar Von Neumann-Schatten frames in separable Banach spaces. (English) Zbl 1266.46010 Mediterr. J. Math. 9, No. 3, 525-535 (2012). Reviewer: Bentuo Zheng (Memphis) MSC: 46B15 42C15 PDF BibTeX XML Cite \textit{G. Sadeghi} and \textit{A. Arefijamaal}, Mediterr. J. Math. 9, No. 3, 525--535 (2012; Zbl 1266.46010) Full Text: DOI OpenURL
Li, Jian-Zhen; Zhu, Yu-Can Some equalities and inequalities for \(g\)-Bessel sequences in Hilbert spaces. (English) Zbl 1250.42087 Appl. Math. Lett. 25, No. 11, 1601-1607 (2012). MSC: 42C15 PDF BibTeX XML Cite \textit{J.-Z. Li} and \textit{Y.-C. Zhu}, Appl. Math. Lett. 25, No. 11, 1601--1607 (2012; Zbl 1250.42087) Full Text: DOI OpenURL
Cahill, Jameson; Casazza, Peter G.; Li, Shidong Non-orthogonal fusion frames and the sparsity of fusion frame operators. (English) Zbl 1300.42005 J. Fourier Anal. Appl. 18, No. 2, 287-308 (2012). MSC: 42C15 68M14 PDF BibTeX XML Cite \textit{J. Cahill} et al., J. Fourier Anal. Appl. 18, No. 2, 287--308 (2012; Zbl 1300.42005) Full Text: DOI arXiv OpenURL
Abdollahpour, M. R.; Najati, A. Approximation of the inverse \(g\)-frame operator. (English) Zbl 1272.42018 Proc. Indian Acad. Sci., Math. Sci. 121, No. 2, 143-154 (2011). Reviewer: Richard A. Zalik (Auburn) MSC: 42C15 46C99 PDF BibTeX XML Cite \textit{M. R. Abdollahpour} and \textit{A. Najati}, Proc. Indian Acad. Sci., Math. Sci. 121, No. 2, 143--154 (2011; Zbl 1272.42018) Full Text: DOI OpenURL
Yu, Bai-Yun; Shu, Zhi-Biao Construction of dual \(g\)-frames for closed subspaces. (English) Zbl 1244.42014 Int. J. Wavelets Multiresolut. Inf. Process. 9, No. 6, 947-964 (2011). Reviewer: S. F. Lukomskii (Saratov) MSC: 42C15 42C40 46C05 PDF BibTeX XML Cite \textit{B.-Y. Yu} and \textit{Z.-B. Shu}, Int. J. Wavelets Multiresolut. Inf. Process. 9, No. 6, 947--964 (2011; Zbl 1244.42014) Full Text: DOI OpenURL
Li, Jian-Zhen; Zhu, Yu-Can Exact g-frames in Hilbert spaces. (English) Zbl 1204.42047 J. Math. Anal. Appl. 374, No. 1, 201-209 (2011). Reviewer: Alexei Lukashov (Istanbul) MSC: 42C15 46C99 42C40 46A35 PDF BibTeX XML Cite \textit{J.-Z. Li} and \textit{Y.-C. Zhu}, J. Math. Anal. Appl. 374, No. 1, 201--209 (2011; Zbl 1204.42047) Full Text: DOI OpenURL
Ding, Ming Ling; Zhu, Yu Can g-Besselian frames in Hilbert spaces. (English) Zbl 1209.42028 Acta Math. Sin., Engl. Ser. 26, No. 11, 2117-2130 (2010). MSC: 42C99 42C25 PDF BibTeX XML Cite \textit{M. L. Ding} and \textit{Y. C. Zhu}, Acta Math. Sin., Engl. Ser. 26, No. 11, 2117--2130 (2010; Zbl 1209.42028) Full Text: DOI OpenURL
Andruchow, Esteban; Antezana, Jorge; Corach, Gustavo Topology and smooth structure for pseudoframes. (English) Zbl 1198.42025 Integral Equations Oper. Theory 67, No. 4, 451-466 (2010). MSC: 42C15 57N20 PDF BibTeX XML Cite \textit{E. Andruchow} et al., Integral Equations Oper. Theory 67, No. 4, 451--466 (2010; Zbl 1198.42025) Full Text: DOI OpenURL
Kaushik, S. K.; Kumar, Varinder Frames of subspaces for Banach spaces. (English) Zbl 1186.42018 Int. J. Wavelets Multiresolut. Inf. Process. 8, No. 2, 243-252 (2010); erratum ibid. 8, No. 4, 677-677 (2010). MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{S. K. Kaushik} and \textit{V. Kumar}, Int. J. Wavelets Multiresolut. Inf. Process. 8, No. 2, 243--252 (2010; Zbl 1186.42018) Full Text: DOI OpenURL
Lammers, Mark; Powell, Alexander M.; Yılmaz, Özgür Alternative dual frames for digital-to-analog conversion in sigma-delta quantization. (English) Zbl 1181.94050 Adv. Comput. Math. 32, No. 1, 73-102 (2010). MSC: 94A12 41A99 94A34 PDF BibTeX XML Cite \textit{M. Lammers} et al., Adv. Comput. Math. 32, No. 1, 73--102 (2010; Zbl 1181.94050) Full Text: DOI OpenURL
Chen, Qingjiang; Wei, Zongtian; Feng, Jinshun A note on the standard dual frame of a wavelet frame with three-scale. (English) Zbl 1198.42028 Chaos Solitons Fractals 42, No. 2, 931-937 (2009). MSC: 42C15 PDF BibTeX XML Cite \textit{Q. Chen} et al., Chaos Solitons Fractals 42, No. 2, 931--937 (2009; Zbl 1198.42028) Full Text: DOI OpenURL
Chen, Qingjiang; Liu, Baocang; Cao, Huaixin Construction of a sort of multiple pseudoframes for subspaces with filter banks. (English) Zbl 1198.42026 Chaos Solitons Fractals 42, No. 2, 801-808 (2009). MSC: 42C15 PDF BibTeX XML Cite \textit{Q. Chen} et al., Chaos Solitons Fractals 42, No. 2, 801--808 (2009; Zbl 1198.42026) Full Text: DOI OpenURL
Chen, Qingjiang; Shi, Zhi; Cao, Huaixin The characterization of a class of subspace pseudoframes with arbitrary real number translations. (English) Zbl 1198.42027 Chaos Solitons Fractals 42, No. 5, 2696-2706 (2009). MSC: 42C15 PDF BibTeX XML Cite \textit{Q. Chen} et al., Chaos Solitons Fractals 42, No. 5, 2696--2706 (2009; Zbl 1198.42027) Full Text: DOI OpenURL
Li, Shidong; Yan, Dunyan Frame fundamental sensor modeling and stability of one-sided frame perturbation. (English) Zbl 1175.42015 Acta Appl. Math. 107, No. 1-3, 91-103 (2009). MSC: 42C15 46C05 47B10 PDF BibTeX XML Cite \textit{S. Li} and \textit{D. Yan}, Acta Appl. Math. 107, No. 1--3, 91--103 (2009; Zbl 1175.42015) Full Text: DOI Link OpenURL
Heil, Christopher; Koo, Yoo Young; Lim, Jae Kun Duals of frame sequences. (English) Zbl 1178.42031 Acta Appl. Math. 107, No. 1-3, 75-90 (2009). Reviewer: Joseph Lakey (Las Cruces) MSC: 42C15 46C99 PDF BibTeX XML Cite \textit{C. Heil} et al., Acta Appl. Math. 107, No. 1--3, 75--90 (2009; Zbl 1178.42031) Full Text: DOI OpenURL
Zang, Lili; Sun, Wenchang; Chen, Dianfa Excess of a class of g-frames. (English) Zbl 1160.42318 J. Math. Anal. Appl. 352, No. 2, 711-717 (2009). MSC: 42C15 PDF BibTeX XML Cite \textit{L. Zang} et al., J. Math. Anal. Appl. 352, No. 2, 711--717 (2009; Zbl 1160.42318) Full Text: DOI OpenURL
Han, Deguang The existence of tight Gabor duals for Gabor frames and subspace Gabor frames. (English) Zbl 1170.42015 J. Funct. Anal. 256, No. 1, 129-148 (2009). Reviewer: Ole Christensen (Lyngby) MSC: 42C15 46B15 46C99 42C99 PDF BibTeX XML Cite \textit{D. Han}, J. Funct. Anal. 256, No. 1, 129--148 (2009; Zbl 1170.42015) Full Text: DOI OpenURL
Antezana, Jorge; Corach, Gustavo Singular value estimates of oblique projections. (English) Zbl 1190.15008 Linear Algebra Appl. 430, No. 1, 386-395 (2009). Reviewer: Jinhai Chen (Hongkong) MSC: 15A18 15A03 15A09 PDF BibTeX XML Cite \textit{J. Antezana} and \textit{G. Corach}, Linear Algebra Appl. 430, No. 1, 386--395 (2009; Zbl 1190.15008) Full Text: DOI Link OpenURL
Cao, Huai-Xin; Li, Lan; Chen, Qing-Jiang; Ji, Guo-Xing \((p,Y)\)-operator frames for a Banach space. (English) Zbl 1257.42041 J. Math. Anal. Appl. 347, No. 2, 583-591 (2008). MSC: 42C15 PDF BibTeX XML Cite \textit{H.-X. Cao} et al., J. Math. Anal. Appl. 347, No. 2, 583--591 (2008; Zbl 1257.42041) Full Text: DOI OpenURL
Ehler, Martin Compactly supported multivariate pairs of dual wavelet frames obtained by convolution. (English) Zbl 1142.42320 Int. J. Wavelets Multiresolut. Inf. Process. 6, No. 2, 183-208 (2008). MSC: 42C40 42C15 PDF BibTeX XML Cite \textit{M. Ehler}, Int. J. Wavelets Multiresolut. Inf. Process. 6, No. 2, 183--208 (2008; Zbl 1142.42320) Full Text: DOI OpenURL
Khosravi, Amir; Khosravi, Behrooz Fusion frames and \(g\)-frames in Hilbert-\(C^*\)-modules. (English) Zbl 1153.46035 Int. J. Wavelets Multiresolut. Inf. Process. 6, No. 3, 433-446 (2008). MSC: 46L08 42C15 47A05 PDF BibTeX XML Cite \textit{A. Khosravi} and \textit{B. Khosravi}, Int. J. Wavelets Multiresolut. Inf. Process. 6, No. 3, 433--446 (2008; Zbl 1153.46035) Full Text: DOI OpenURL
Czaja, Wojciech; Kutyniok, Gitta; Speegle, Darrin Beurling dimension of Gabor pseudoframes for affine subspaces. (English) Zbl 1268.42055 J. Fourier Anal. Appl. 14, No. 4, 514-537 (2008). MSC: 42C15 42C40 PDF BibTeX XML Cite \textit{W. Czaja} et al., J. Fourier Anal. Appl. 14, No. 4, 514--537 (2008; Zbl 1268.42055) Full Text: DOI OpenURL
Li, Shidong; Ogawa, Hidemitsu Optimal noise suppression: A geometric nature of pseudoframes for subspaces. (English) Zbl 1174.42040 Adv. Comput. Math. 28, No. 2, 141-155 (2008). Reviewer: Wenchang Sun (Tianjin) MSC: 42C15 PDF BibTeX XML Cite \textit{S. Li} and \textit{H. Ogawa}, Adv. Comput. Math. 28, No. 2, 141--155 (2008; Zbl 1174.42040) Full Text: DOI OpenURL
Chen, Qingjiang; Cheng, Zhengxing; Wang, Cuiling Affine pseudoframes for subspaces of \(L^2(\mathbf R)\) associated with a generalized multiresolution structure. (English) Zbl 1152.42313 Chaos Solitons Fractals 34, No. 5, 1401-1411 (2007). MSC: 42C40 PDF BibTeX XML Cite \textit{Q. Chen} et al., Chaos Solitons Fractals 34, No. 5, 1401--1411 (2007; Zbl 1152.42313) Full Text: DOI OpenURL
Sun, Wenchang Stability of \(g\)-frames. (English) Zbl 1130.42307 J. Math. Anal. Appl. 326, No. 2, 858-868 (2007). MSC: 42C15 PDF BibTeX XML Cite \textit{W. Sun}, J. Math. Anal. Appl. 326, No. 2, 858--868 (2007; Zbl 1130.42307) Full Text: DOI OpenURL
Antezana, Jorge; Corach, Gustavo Sampling theory, oblique projections and a question by Smale and Zhou. (English) Zbl 1102.94024 Appl. Comput. Harmon. Anal. 21, No. 2, 245-253 (2006). MSC: 94A20 47A50 93E24 PDF BibTeX XML Cite \textit{J. Antezana} and \textit{G. Corach}, Appl. Comput. Harmon. Anal. 21, No. 2, 245--253 (2006; Zbl 1102.94024) Full Text: DOI OpenURL
Christensen, O.; Kim, H. O.; Kim, R. Y.; Lim, J. K. Riesz sequences of translates and generalized duals with support on \([0,1]\). (English) Zbl 1104.42017 J. Geom. Anal. 16, No. 4, 585-596 (2006). Reviewer: Boris I. Golubov (Dolgoprudny) MSC: 42C15 PDF BibTeX XML Cite \textit{O. Christensen} et al., J. Geom. Anal. 16, No. 4, 585--596 (2006; Zbl 1104.42017) Full Text: DOI OpenURL
Sun, Wenchang \(g\)-frames and \(g\)-Riesz bases. (English) Zbl 1129.42017 J. Math. Anal. Appl. 322, No. 1, 437-452 (2006). Reviewer: Paşc Găvruţă (Timişoara) MSC: 42C15 46B15 47A99 PDF BibTeX XML Cite \textit{W. Sun}, J. Math. Anal. Appl. 322, No. 1, 437--452 (2006; Zbl 1129.42017) Full Text: DOI arXiv OpenURL
Antezana, J.; Corach, G.; Ruiz, M.; Stojanoff, D. Nullspaces and frames. (English) Zbl 1077.42020 J. Math. Anal. Appl. 309, No. 2, 709-723 (2005). Reviewer: Ole Christensen (Lyngby) MSC: 42C15 47B99 PDF BibTeX XML Cite \textit{J. Antezana} et al., J. Math. Anal. Appl. 309, No. 2, 709--723 (2005; Zbl 1077.42020) Full Text: DOI arXiv Link OpenURL
Christensen, O.; Eldar, Y. C. Oblique dual frames and shift-invariant spaces. (English) Zbl 1043.42027 Appl. Comput. Harmon. Anal. 17, No. 1, 48-68 (2004). MSC: 42C40 42C15 PDF BibTeX XML Cite \textit{O. Christensen} and \textit{Y. C. Eldar}, Appl. Comput. Harmon. Anal. 17, No. 1, 48--68 (2004; Zbl 1043.42027) Full Text: DOI OpenURL