Janic, A.; Ledwina, T. Data-driven smooth tests for a location-scale family revisited. (English) Zbl 1211.62073 J. Stat. Theory Pract. 3, No. 3, 645-664 (2009). Summary: A new data-driven, smooth goodness of test for a location-scale family is proposed and studied. The new test statistic is a combination of an efficient score statistic and an appropriate selection rule. Some examples are presented and by using extensive simulations the test is shown to have desirable properties. Cited in 2 Documents MSC: 62G10 Nonparametric hypothesis testing 62G20 Asymptotic properties of nonparametric inference 65C60 Computational problems in statistics (MSC2010) Keywords:efficient score statistic; goodness-of-fit test; model selection; Schwarz’s rule; test for extreme value distribution; test for normality × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Aerts, M.; Claeskens, G.; Hart, J., Testing the fit of a parametric function, J. Amer. Statist. Assoc., 94, 869-879 (1999) · Zbl 0996.62044 [2] Aerts, M.; Claeskens, G.; Hart, J., Testing lack of fit in multiple regression, Biometrika, 87, 405-424 (2000) · Zbl 0948.62028 [3] Bai, Z.; Chen, L., Weighted W test for normality and asymptotics a revisit of Chen-Shapiro test for normality, J. Statist. Plann. Inference, 113, 485-503 (2003) · Zbl 1026.62042 [4] Baklanov, E.; Borisov, I., Probability inequalities and limit theorems for generalized L-statistics, Lith. Math. J., 43, 125-140 (2003) · Zbl 1052.60015 [5] Bera, A.; Bilias, Y., Rao’s score, Neyman’s C(α) and Silvey’s LM tests: an essay on historical developments and some new results, J. Statist. Plann. Inference, 97, 9-44 (2001) · Zbl 1053.62023 [6] Bera, A.; Bilias, Y., On optimality properties of Fisher-Rao score function in testing and estimation, Commun. Statist.-Theory Meth., 30, 1533-1559 (2001) · Zbl 1008.62545 [7] Bickel, P.; Ritov, Y.; Stoker, T., Tailor-made tests for goodness of fit to semiparametric hypotheses, Ann. Statist., 34, 721-741 (2006) · Zbl 1092.62050 [8] Bogdan, M.; Ledwina, T., Testing uniformity via log-spline modeling, Statistics, 28, 131-157 (1996) · Zbl 1077.62515 [9] Bühler, W.; Puri, P., On optimal asymptotic tests of composite hypotheses with several constraints, Z. Wahrsch. verw. Geb., 5, 71-88 (1966) · Zbl 0203.21006 [10] Chen, L.; Shapiro, S., An alternative test for normality based on normalized spacings, J. Statist. Comput. Simulation, 53, 269-288 (1995) · Zbl 0873.62045 [11] Claeskens, G.; Hjort, N., Goodness of fit via non-parametric likelihood ratios, Scand. J. Statist., 31, 487-513 (2004) · Zbl 1065.62056 [12] D’Agostino, R., Stephens, M., 1986. Goodness-of-Fit Techniques. Dekker, New York. · Zbl 0597.62030 [13] Downton, F., Linear estimates with polynomial coefficients, Biometrika, 53, 129-141 (1966) · Zbl 0173.46403 [14] Fromont, M.; Laurent, B., Adaptive goodness-of-fit tests in a density model, Ann. Statist., 34, 680-720 (2006) · Zbl 1096.62040 [15] Greenwood, J.; Landwehr, J.; Matalas, N., Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form, Water Resour. Res., 15, 1049-1054 (1979) [16] Hosking, J.; Wallis, J.; Wood, E., Estimation of the generalized extreme-value distribution by the method of probability-weighted moments, Technometrics, 27, 251-261 (1985) [17] Huber, P., 1981. Robust Statistics. Wiley, New York. · Zbl 0536.62025 [18] Inglot, T.; Kallenberg, W., Moderate deviations of minimum contrast estimators under contamination, Ann. Statist., 31, 852-879 (2003) · Zbl 1028.62012 [19] Inglot, T.; Kallenberg, W.; Ledwina, T., On selection rules with an application to goodness-of-fit for composite hypotheses (1994) [20] Inglot, T.; Kallenberg, W.; Ledwina, T., Data driven smooth tests for composite hypotheses, Ann. Statist., 25, 1222-1250 (1997) · Zbl 0904.62055 [21] Inglot, T.; Ledwina, T., Moderately large deviations and expansions of large deviations for some functionals of weighted empirical process, Ann. Probab., 21, 1691-1705 (1993) · Zbl 0786.60027 [22] Inglot, T.; Ledwina, T., Asymptotic optimality of data driven smooth tests for location-scale family (2001) · Zbl 0999.62034 [23] Inglot, T.; Ledwina, T., Data-driven score tests for homoscedastic linear regression model: asymptotic results, Probab. Math. Statist., 26, 41-61 (2006) · Zbl 1104.62051 [24] Inglot, T.; Ledwina, T.; Hušková, M. (ed.); Janžura, M. (ed.), Data-driven score tests for homoscedastic linear regression model: the construction and simulations, 124-137 (2006), Prague [25] Inglot, T.; Ledwina, T., Towards data driven selection of a penalty function for data driven Neyman tests, Linear Algebra and its Appl., 417, 579-590 (2006) · Zbl 1095.62023 [26] Janic-Wróblewska, A., Data-driven smooth test for a location-scale family, Statistics, 38, 337-355 (2004) · Zbl 1106.62052 [27] Janic-Wróblewska, A., Data-driven smooth test for extreme value distribution, Statistics, 38, 413-426 (2004) · Zbl 1085.62049 [28] Javitz, H., 1975. Generalized smooth tests of goodness of fit, independence and equality of distributions. Ph.D. thesis, University of California., Berkeley, USA. [29] Kallenberg, W.; Ledwina, T., On data driven Neyman’s tests, Probab. Math. Statist., 15, 409-426 (1995) · Zbl 0847.62034 [30] Kallenberg, W.; Ledwina, T., Data driven smooth tests for composite hypotheses: Comparison of powers, J. Statist. Comput. Simul., 59, 101-121 (1997) · Zbl 1067.62535 [31] Kallenberg, W.; Ledwina, T., Data driven smooth tests when the hypothesis is composite, J. Amer. Statist. Assoc., 92, 1094-1104 (1997) · Zbl 1067.62534 [32] Kallenberg, W.; Ledwina, T., Data driven rank tests for independence, J. Amer. Statist. Assoc., 94, 285-301 (1999) · Zbl 1072.62574 [33] Landwehr, J.; Matalas, N., Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles, Water Resour. Res., 15, 1055-1064 (1979) [34] LaRiccia, V., Smooth goodness-of-fit tests: a quantile function approach, J. Amer. Statist. Assoc., 86, 427-431 (1991) [35] LaRiccia, V.; Mason, D., Optimal goodness-of-fit tests for location/scale families of distributions based on the sum of squares of L-statistics, Ann. Statist., 13, 315-330 (1985) · Zbl 0576.62031 [36] Cam, L.; Lehmann, E., J. Neyman — on the occasion of his 80th birthday (1974) · Zbl 0278.01020 [37] Ledwina, T., Data-driven version of Neyman’s smooth test of fit, J. Amer. Statist. Assoc., 89, 1000-1005 (1994) · Zbl 0805.62022 [38] Meintanis, S.; Swanepoel, J., Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms, Statist. Probab. Lett., 77, 1004-1013 (2007) · Zbl 1116.62052 [39] Morales, D.; Pardo, L.; Vajda, I., Some new statistics for testing hypotheses in parametric models, J. Multivariate Anal., 62, 137-168 (1997) · Zbl 0877.62020 [40] Neyman, J., Sur une famille de tests asymptotiques des hypothèses statistiques composées, Trabajos de Estadistica, 5, 161-168 (1954) · Zbl 0059.13202 [41] Neyman, J.; Grenander, U. (ed.), Optimal asymptotic tests of composite statistical hypotheses, 212-234 (1959), New York · Zbl 0104.12602 [42] Pearson, E.; D’Agostino, R.; Bowman, K., Tests for departure from normality: comparison of powers, Biometrika, 64, 231-246 (1977) · Zbl 0371.62102 [43] Rayner, J., Best, D., 1989. Smooth Tests of Goodness of Fit. Oxford University Press, New York. · Zbl 0731.62064 [44] Rubin, H.; Sethuraman, J., Probabilities of moderate deviations, Sankhyā Ser. A, 27, 325-346 (1965) · Zbl 0178.53802 [45] Shorack, G., Wellner, J., 1986. Empirical Processes with Applications to Statistics. Wiley, New York. · Zbl 1170.62365 [46] Stute, W.; Manteiga, W.; Quindimil, M., Bootstrap based goodness-of-fit tests, Metrika, 40, 243-256 (1993) · Zbl 0770.62016 [47] Thomas, D.; Pierce, D., Neyman’s smooth goodness-of-fit test when the hypothesis is composite, J. Amer. Statist. Assoc., 74, 441-445 (1979) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.