×

Boundary element analysis of mode I and mixed mode (I and II) crack problems of 2D gradient elasticity. (English) Zbl 1173.74458

Summary: A boundary element method is developed for fracture analysis of gradient elastic planar solids under static loading. A simple version of Mindlin’s general theory of gradient elastic materials is employed and the two required boundary integral equations, one for the displacement vector and the other for its normal derivative are presented. Use is made of the fundamental solution of the problem and this leads to a formulation that requires only a boundary discretization. Two representative numerical examples are presented to illustrate the method, demonstrate its accuracy and efficiency and assess the gradient effect on the response. The first deals with a mode I crack, while the second with a mixed mode (I & II) crack. For the second case the proposed method is used in conjunction with the method of subregions. The method is employed with regular and special (near the crack tip) boundary elements. The gradient effect consists of modifying both the displacement and the stress field around the crack tip and resulting in a response which is more physically acceptable than the one coming from the classical theory of elasticity.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
74R10 Brittle fracture
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Rat. Mech. Anal., 16, 51-78 (1964) · Zbl 0119.40302
[2] Mindlin, R. D.; Eshel, N. N., On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., 4, 109-124 (1968) · Zbl 0166.20601
[3] Eringen, C. A., Linear theory of micropolar elasticity, J. Math. Mech., 15, 909-923 (1966) · Zbl 0145.21302
[4] Toupin, R. A., Elastic materials with couple-stresses, Arch. Rat. Mech. Anal., 11, 385-414 (1962) · Zbl 0112.16805
[5] Koiter, W. T., Couple stresses in the theory of elasticity, I & II, Proc. K. Ned. Akad. Wet. (B), 67, 17-44 (1964) · Zbl 0124.17405
[6] Tiersten, H. F.; Bleustein, J. L., Generalized elastic continua, (Herrmann, G., R.D. Mindlin and Applied Mechanics (1974), Pergamon Press: Pergamon Press New York), 67-103
[7] Lakes, R., Experimental methods for study of Cosserat elastic solids and other generalized elastic continua, (Mühlhaus, H. B., Continuum Models for Materials with Microstructure (1995), John Wiley and Sons: John Wiley and Sons Chichester), 1-25 · Zbl 0900.73005
[8] Vardoulakis, I.; Sulem, J., Bifurcation Analysis in Geomechanics (1995), Chapman and Hall: Chapman and Hall London · Zbl 0900.73645
[9] Exadaktylos, G. E.; Vardoulakis, I., Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics, Tectonophysics, 335, 81-109 (2001)
[10] Ru, C. Q.; Aifantis, E. C., A simple approach to solve boundary value problems in gradient elasticity, Acta Mech., 101, 59-68 (1993) · Zbl 0783.73015
[11] Chang, C. S.; Gao, J., Wave propagation in granular rod using high-gradient theory, J. Engrg. Mech. ASCE, 123, 52-59 (1997)
[12] Tsepoura, K. G.; Papargyri-Beskou, S.; Polyzos, D.; Beskos, D. E., Static and dynamic analysis of gradient elastic bars in tension, Arch. Appl. Mech., 72, 483-497 (2002) · Zbl 1053.74028
[13] Papargyri-Beskou, S.; Tsepoura, K. G.; Polyzos, D.; Beskos, D. E., Bending and stability analysis of gradient elastic beams, Int. J. Solids Struct., 40, 385-400 (2003) · Zbl 1022.74010
[14] Papargyri-Beskou, S.; Polyzos, D.; Beskos, D. E., Dynamic analysis of gradient elastic flexural beams, Struct. Engrg. Mech., 15, 705-716 (2003) · Zbl 1022.74010
[15] Georgiadis, H. G.; Vardoulakis, I.; Velgaki, E. G., Dispersive Rayleigh wave propagation in microstructured solids characterized by dipolar gradient elasticity, J. Elasticity, 74, 17-45 (2004) · Zbl 1058.74045
[16] Giannakopoulos, A. E.; Stamoulis, K., Structural analysis of gradient elastic components, Int. J. Solids Struct., 44, 3440-3451 (2007) · Zbl 1121.74393
[17] Vardoulakis, I.; Exadaktylos, G.; Aifantis, E., Gradient elasticity with surface energy: mode-III crack problem, Int. J. Solids Struct., 33, 4531-4559 (1996) · Zbl 0919.73237
[18] Exadaktylos, G.; Vardoulakis, I.; Aifantis, E., Cracks in gradient elastic bodies with surface energy, Int. J. Fract., 79, 107-119 (1996) · Zbl 0919.73237
[19] Vardoulakis, I.; Exadaktylos, G., The asymptotic solution of anisotropic gradient elasticity with surface energy for mode-II crack, (Durban, D., Non-linear Singularities in Deformation and Flow (1997), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 87-98 · Zbl 1073.74621
[20] Exadaktylos, G., Gradient elasticity with surface energy: mode-I crack problem, Int. J. Solids Struct., 35, 421-456 (1998) · Zbl 0930.74050
[21] Shi, M. X.; Huang, Y.; Hwang, K. C., Fracture in a higher-order elastic continuum, J. Mech. Phys. Solids, 48, 2513-2538 (2000) · Zbl 1010.74057
[22] Fannjiang, A. C.; Chan, Y. S.; Paulino, G. H., Strain gradient elasticity for antiplane shear cracks: a hypersingular integrodifferential equation approach, SIAM J. Appl. Math., 62, 1066-1091 (2002) · Zbl 1016.74058
[23] Georgiadis, H. G., The mode III crack problem in microstructured solids governed by dipolar gradient elasticity: static and dynamic analysis, J. Appl. Mech. ASME, 70, 517-530 (2003) · Zbl 1110.74453
[24] Georgiadis, H. G.; Grentzelou, C. G., Energy theorems and the \(J\)-integral in dipolar gradient elasticity, Int. J. Solids Struct., 43, 5690-5712 (2006) · Zbl 1120.74341
[25] Sternberg, E.; Muki, R., The effect of couple-stresses on the stress concentration around a crack, Int. J. Solids Struct., 3, 69-95 (1967)
[26] Atkinson, C.; Leppington, F. G., The effect of couple stresses on the tip of a crack, Int. J. Solids Struct., 13, 1103-1122 (1977) · Zbl 0368.73083
[27] Huang, Y.; Zhang, L.; Guo, T. F.; Hwang, K. C., Mixed mode near-tip fields for cracks in materials with strain-gradient effects, J. Mech. Phys. Solids, 45, 439-465 (1997) · Zbl 1049.74521
[28] Zhang, L.; Huang, Y.; Chen, J. Y.; Hwang, K. C., The mode III full-field solution in elastic materials with strain gradient effects, Int. J. Fract., 92, 325-348 (1998)
[29] Diegele, E.; Elsässer, R.; Tsakmakis, C., Linear micropolar elastic crack-tip fields under mixed-mode loading conditions, Int. J. Fract., 129, 309-339 (2004) · Zbl 1187.74171
[30] Sun, Y. G.; Zhou, Z. G., Stress field near the crack tip in nonlocal anisotropic elasticity, Europ. J. Mech. A/Solids, 23, 259-269 (2004) · Zbl 1058.74622
[31] Shu, J. Y.; King, W. E.; Fleck, N. A., Finite elements for materials with strain gradient effects, Int. J. Numer. Methods Engrg., 44, 373-391 (1999) · Zbl 0943.74072
[32] Tsepoura, K. G.; Papargyri-Beskou, S.; Polyzos, D., A boundary element method for solving 3-D static gradient elastic problems with surface energy, Comput. Mech., 29, 361-381 (2002) · Zbl 1146.74368
[33] Amanatidou, E.; Aravas, N., Mixed finite element formulations of strain-gradient elasticity problems, Comput. Methods Appl. Mech. Engrg., 191, 1723-1751 (2002) · Zbl 1098.74678
[34] Soh, A. K.; Wanji, C., Finite element formulations of strain gradient theory for microstructures and the \(C^{0−1}\) patch test, Int. J. Numer. Methods Engrg., 61, 433-454 (2004) · Zbl 1075.74678
[35] E. Amanantidou, A. Giannakopoulos, N. Aravas, Finite element models of strain-gradient elasticity: accuracy and error estimates, in: G. Georgiou, P. Papanastasiou, M. Papadrakakis (Eds.), Proceedings of 5th GRACM International Congress on Computational Mechanics, University of Cyprus, Nicosia, 2005, pp. 797-804.; E. Amanantidou, A. Giannakopoulos, N. Aravas, Finite element models of strain-gradient elasticity: accuracy and error estimates, in: G. Georgiou, P. Papanastasiou, M. Papadrakakis (Eds.), Proceedings of 5th GRACM International Congress on Computational Mechanics, University of Cyprus, Nicosia, 2005, pp. 797-804.
[36] Markolefas, S. I.; Tsouvalas, D. A.; Tsamasphyros, G. I., Theoretical analysis of a class of mixed, \(C^0\) continuity formulations for general dipolar gradient elasticity boundary value problems, Int. J. Solids Struct., 44, 546-572 (2007) · Zbl 1188.74066
[37] Teneketzis Tenek, L.; Aifantis, E. C., A two-dimensional finite element implementation of a special form of gradient elasticity, Comput. Model. Engrg. Sci., 3, 731-741 (2002) · Zbl 1143.74376
[38] Tang, Z.; Shen, S.; Atluri, S. N., Analysis of materials with strain-gradient effects: a meshless local Petrov-Galerkin (MLPG) approach, with nodal displacements only, Comput. Model. Engrg. Sci., 4, 177-196 (2003) · Zbl 1148.74346
[39] Dessouky, S.; Masad, E.; Zbib, H.; Little, D., Gradient elasticity finite element model for the microstructure analysis of asphaltic materials, (Bathe, K. J., Computational Fluid and Solid Mechanics 2003 (2003), Elsevier: Elsevier London), 228-233
[40] Polyzos, D.; Tsepoura, K. G.; Tsinopoulos, S. V.; Beskos, D. E., A boundary element method for solving 2-D and 3-D static gradient elastic problems. Part I: Integral formulation, Comput. Methods Appl. Mech. Engng, 192, 2845-2873 (2003) · Zbl 1054.74740
[41] Tsepoura, K. G.; Tsinopoulos, S. V.; Polyzos, D.; Beskos, D. E., A boundary element method for solving 2-D and 3-D static gradient elastic problems. Part II: Numerical implementation, Comput. Methods Appl. Mech. Engrg., 192, 2875-2907 (2003) · Zbl 1054.74742
[42] Tsepoura, K. G.; Polyzos, D., Static and harmonic BEM solutions of gradient elasticity problems with axisymmetry, Comput. Mech., 32, 89-103 (2003) · Zbl 1151.74426
[43] Polyzos, D.; Tsepoura, K. G.; Beskos, D. E., Transient dynamic analysis of 3-D gradient elastic solids by BEM, Comput. Struct., 83, 783-792 (2005)
[44] Herrmann, L. R., Mixed finite elements for couple-stress analysis, (Atluri, S. N.; Gallagher, R. H.; Zienkiewicz, O. C., Hybrid and Mixed Finite Element Methods (1983), John Wiley and Sons, Ltd.: John Wiley and Sons, Ltd. London), 1-17
[45] Nakamura, S.; Benedict, R.; Lakes, R., Finite element method for orthotropic micropolar elasticity, Int. J. Engrg. Sci., 22, 319-330 (1984) · Zbl 0536.73007
[46] Providas, E.; Kattis, M. A., Finite element method in plane Cosserat elasticity, Comput. Struct., 80, 2059-2069 (2002)
[47] Liang, K. Z.; Huang, F. Y., Boundary element method for micropolar elasticity, Int. J. Engrg. Sci., 34, 509-521 (1996) · Zbl 0900.73914
[48] Huang, F. Y.; Liang, K. Z., Boundary element analysis of stress concentration in micropolar elastic plate, Int. J. Numer. Methods Engrg., 40, 1611-1622 (1997)
[49] Sladek, J.; Sladek, V., Application of local boundary integral equation method into micropolar elasticity, Engrg. Anal. Bound. Elem., 27, 81-90 (2003) · Zbl 1021.74047
[50] Beskos, D. E., Boundary element methods in dynamic analysis. Part II (1986-1996), Appl. Mech. Rev. ASME, 50, 149-197 (1997)
[51] Aliabadi, M. H., Boundary element formulations in fracture mechanics, Appl. Mech. Rev. ASME, 50, 83-96 (1997)
[52] Dominguez, J.; Ariza, M. P., Hypersingular and mixed boundary elements in fracture mechanics, (Beskos, D.; Maier, G., Boundary Element Advances in Solid Mechanics (2003), Springer: Springer Wien), 115-165 · Zbl 1102.74048
[53] Lim, K. M.; Lee, K. H.; Tay, A. A.O.; Zhou, W., A new variable-order singular boundary element for two-dimensional stress analysis, Int. J. Numer. Methods Engrg., 55, 293-316 (2002) · Zbl 1098.74728
[54] Zhou, W.; Lim, K. M.; Lee, K. H.; Tay, A. A., A new variable-order singular boundary element for calculating stress intensity factors in three-dimensional elasticity problems, Int. J. Solids Struct., 42, 159-185 (2005) · Zbl 1126.74053
[55] Guiggiani, M.; Gigante, A., A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method, J. Appl. Mech. ASME, 57, 906-915 (1990) · Zbl 0735.73084
[56] Broek, J. F., Elementary Engineering Fracture Mechanics (1974), Noordhoff International Publishing: Noordhoff International Publishing Leyden
[57] Barenblatt, G. I., Mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7, 55-129 (1962)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.