Miot, Evelyne; Sharples, Nicholas On solutions of the transport equation in the presence of singularities. (English) Zbl 07599881 Trans. Am. Math. Soc. 375, No. 10, 7187-7207 (2022). Reviewer: Lucio Galeati (Lausanne) MSC: 35Q49 35A01 35A02 28A35 PDF BibTeX XML Cite \textit{E. Miot} and \textit{N. Sharples}, Trans. Am. Math. Soc. 375, No. 10, 7187--7207 (2022; Zbl 07599881) Full Text: DOI arXiv OpenURL
De Lellis, Camillo; Giri, Vikram Smoothing does not give a selection principle for transport equations with bounded autonomous fields. (English. French summary) Zbl 1491.35381 Ann. Math. Qué. 46, No. 1, 27-39 (2022). MSC: 35Q49 35L03 35D30 35B65 46E35 PDF BibTeX XML Cite \textit{C. De Lellis} and \textit{V. Giri}, Ann. Math. Qué. 46, No. 1, 27--39 (2022; Zbl 1491.35381) Full Text: DOI arXiv OpenURL
Bianchini, Stefano; Bonicatto, Paolo A uniqueness result for the decomposition of vector fields in \(\mathbb{R}^d\). (English) Zbl 1435.35121 Invent. Math. 220, No. 1, 255-393 (2020). MSC: 35F10 35L03 28A50 35D30 26B35 26B10 26B05 49Q15 58C25 PDF BibTeX XML Cite \textit{S. Bianchini} and \textit{P. Bonicatto}, Invent. Math. 220, No. 1, 255--393 (2020; Zbl 1435.35121) Full Text: DOI OpenURL
Kneuss, Olivier; Neves, Wladimir On flows generated by vector fields with compact support. (English) Zbl 1407.37029 Port. Math. (N.S.) 75, No. 2, 121-157 (2018). MSC: 37C10 37C05 PDF BibTeX XML Cite \textit{O. Kneuss} and \textit{W. Neves}, Port. Math. (N.S.) 75, No. 2, 121--157 (2018; Zbl 1407.37029) Full Text: DOI arXiv OpenURL
Seis, Christian A quantitative theory for the continuity equation. (English) Zbl 1377.35041 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 7, 1837-1850 (2017). MSC: 35B45 35A02 PDF BibTeX XML Cite \textit{C. Seis}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 7, 1837--1850 (2017; Zbl 1377.35041) Full Text: DOI arXiv OpenURL
Alberti, Giovanni; Bianchini, Stefano; Crippa, Gianluca A uniqueness result for the continuity equation in two dimensions. (English) Zbl 1286.35006 J. Eur. Math. Soc. (JEMS) 16, No. 2, 201-234 (2014). MSC: 35A02 35F10 35L03 28A50 PDF BibTeX XML Cite \textit{G. Alberti} et al., J. Eur. Math. Soc. (JEMS) 16, No. 2, 201--234 (2014; Zbl 1286.35006) Full Text: DOI OpenURL
Alberti, Giovanni Generalized \(N\)-property and Sard theorem for Sobolev maps. (English) Zbl 1258.35056 Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 23, No. 4, 477-491 (2012). MSC: 35F10 35L03 46E35 26B35 28A75 58K05 PDF BibTeX XML Cite \textit{G. Alberti}, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 23, No. 4, 477--491 (2012; Zbl 1258.35056) Full Text: DOI OpenURL