Lashkarboluki, Amirreza; Hosseini, Hamed; Ganji, Davood Dimiri Investigating the solutions of two classical nonlinear oscillators by the AG method. (English) Zbl 1506.70030 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 110, 28 p. (2021). MSC: 70K60 70-08 PDF BibTeX XML Cite \textit{A. Lashkarboluki} et al., Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 110, 28 p. (2021; Zbl 1506.70030) Full Text: DOI
He, Ji-Huan; Qie, Na; He, Chun-hui; Saeed, Tareq On a strong minimum condition of a fractal variational principle. (English) Zbl 07410059 Appl. Math. Lett. 119, Article ID 107199, 6 p. (2021). MSC: 49K15 28A80 49K15 83D05 35R02 74H99 PDF BibTeX XML Cite \textit{J.-H. He} et al., Appl. Math. Lett. 119, Article ID 107199, 6 p. (2021; Zbl 07410059) Full Text: DOI
He, Ji-Huan Asymptotic methods for solitary solutions and compactons. (English) Zbl 1257.35158 Abstr. Appl. Anal. 2012, Article ID 916793, 130 p. (2012). MSC: 35Q51 35C08 35R11 35-01 PDF BibTeX XML Cite \textit{J.-H. He}, Abstr. Appl. Anal. 2012, Article ID 916793, 130 p. (2012; Zbl 1257.35158) Full Text: DOI
Ashyralyev, Allaberen; Dal, Fadime Finite difference and iteration methods for fractional hyperbolic partial differential equations with the Neumann condition. (English) Zbl 1248.65086 Discrete Dyn. Nat. Soc. 2012, Article ID 434976, 15 p. (2012). MSC: 65M06 35R11 35L99 PDF BibTeX XML Cite \textit{A. Ashyralyev} and \textit{F. Dal}, Discrete Dyn. Nat. Soc. 2012, Article ID 434976, 15 p. (2012; Zbl 1248.65086) Full Text: DOI
Abdou, M. A. New analytic solution of Von Karman swirling viscous flow. (English) Zbl 1192.35127 Acta Appl. Math. 111, No. 1, 7-13 (2010). MSC: 35Q30 76M45 35C05 76E07 PDF BibTeX XML Cite \textit{M. A. Abdou}, Acta Appl. Math. 111, No. 1, 7--13 (2010; Zbl 1192.35127) Full Text: DOI
Abdou, M. A. Approximate solutions of nonlinear differential difference equations. (English) Zbl 1267.65201 Int. J. Comput. Methods 6, No. 4 (2009). MSC: 65Q99 PDF BibTeX XML Full Text: DOI
Noor, Muhammad Aslam; Noor, Khalida Inayat; Mohyud-Din, Syed Tauseef Modified variational iteration technique for solving singular fourth-order parabolic partial differential equations. (English) Zbl 1238.65103 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 12, e-Suppl., e630-e640 (2009). MSC: 65M99 PDF BibTeX XML Cite \textit{M. A. Noor} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 12, e630--e640 (2009; Zbl 1238.65103) Full Text: DOI
Abdou, M. A.; Zhang, Sheng New periodic wave solutions via extended mapping method. (English) Zbl 1221.35386 Commun. Nonlinear Sci. Numer. Simul. 14, No. 1, 2-11 (2009). MSC: 35Q55 35-04 35B10 PDF BibTeX XML Cite \textit{M. A. Abdou} and \textit{S. Zhang}, Commun. Nonlinear Sci. Numer. Simul. 14, No. 1, 2--11 (2009; Zbl 1221.35386) Full Text: DOI
Soliman, A. A. On the solution of two-dimensional coupled Burgers’ equations by variational iteration method. (English) Zbl 1197.65203 Chaos Solitons Fractals 40, No. 3, 1146-1155 (2009). MSC: 65N99 35Q53 PDF BibTeX XML Cite \textit{A. A. Soliman}, Chaos Solitons Fractals 40, No. 3, 1146--1155 (2009; Zbl 1197.65203) Full Text: DOI
El-Wakil, S. A.; Abulwafa, Essam M.; Abdou, M. A. An improved variational iteration method for solving coupled KdV and Boussinesq-like \(B(m, n)\) equations. (English) Zbl 1197.35223 Chaos Solitons Fractals 39, No. 3, 1324-1334 (2009). MSC: 35Q53 65M99 35A25 PDF BibTeX XML Cite \textit{S. A. El-Wakil} et al., Chaos Solitons Fractals 39, No. 3, 1324--1334 (2009; Zbl 1197.35223) Full Text: DOI
Dal, Fadime Application of variational iteration method to fractional hyperbolic partial differential equations. (English) Zbl 1190.65185 Math. Probl. Eng. 2009, Article ID 824385, 10 p. (2009). MSC: 65N99 35L99 26A33 PDF BibTeX XML Cite \textit{F. Dal}, Math. Probl. Eng. 2009, Article ID 824385, 10 p. (2009; Zbl 1190.65185) Full Text: DOI EuDML
Assas, Laila M. B. Variational iteration method for solving coupled-KdV equations. (English) Zbl 1152.35466 Chaos Solitons Fractals 38, No. 4, 1225-1228 (2008). MSC: 35Q53 65M99 PDF BibTeX XML Cite \textit{L. M. B. Assas}, Chaos Solitons Fractals 38, No. 4, 1225--1228 (2008; Zbl 1152.35466) Full Text: DOI
Noor, Muhammad Aslam; Mohyud-Din, Syed Tauseef Homotopy perturbation method for solving sixth-order boundary value problems. (English) Zbl 1142.65386 Comput. Math. Appl. 55, No. 12, 2953-2972 (2008). MSC: 65L10 PDF BibTeX XML Cite \textit{M. A. Noor} and \textit{S. T. Mohyud-Din}, Comput. Math. Appl. 55, No. 12, 2953--2972 (2008; Zbl 1142.65386) Full Text: DOI
Inc, Mustafa The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method. (English) Zbl 1146.35304 J. Math. Anal. Appl. 345, No. 1, 476-484 (2008). MSC: 35A35 35S10 26A33 PDF BibTeX XML Cite \textit{M. Inc}, J. Math. Anal. Appl. 345, No. 1, 476--484 (2008; Zbl 1146.35304) Full Text: DOI
Xu, Lan Variational approach to solitons of nonlinear dispersive \(K(m, n)\) equations. (English) Zbl 1143.35361 Chaos Solitons Fractals 37, No. 1, 137-143 (2008). MSC: 35Q53 35Q51 35A15 PDF BibTeX XML Cite \textit{L. Xu}, Chaos Solitons Fractals 37, No. 1, 137--143 (2008; Zbl 1143.35361) Full Text: DOI
He, Ji-Huan Variational principle for two-dimensional incompressible inviscid flow. (English) Zbl 1209.76025 Phys. Lett., A 371, No. 1-2, 39-40 (2007). MSC: 76M25 76D05 PDF BibTeX XML Cite \textit{J.-H. He}, Phys. Lett., A 371, No. 1--2, 39--40 (2007; Zbl 1209.76025) Full Text: DOI
Abdou, M. A. On the variational iteration method. (English) Zbl 1203.65205 Phys. Lett., A 366, No. 1-2, 61-68 (2007). MSC: 65M99 PDF BibTeX XML Cite \textit{M. A. Abdou}, Phys. Lett., A 366, No. 1--2, 61--68 (2007; Zbl 1203.65205) Full Text: DOI
Inc, Mustafa Numerical doubly-periodic solution of the \((2+1)\)-dimensional Boussinesq equation with initial conditions by the variational iteration method. (English) Zbl 1203.65210 Phys. Lett., A 366, No. 1-2, 20-24 (2007). MSC: 65M99 35Q53 35B10 PDF BibTeX XML Cite \textit{M. Inc}, Phys. Lett., A 366, No. 1--2, 20--24 (2007; Zbl 1203.65210) Full Text: DOI
Inc, Mustafa Numerical simulation of KdV and mKdv equations with initial conditions by the variational iteration method. (English) Zbl 1142.35572 Chaos Solitons Fractals 34, No. 4, 1075-1081 (2007). MSC: 35Q53 65N99 PDF BibTeX XML Cite \textit{M. Inc}, Chaos Solitons Fractals 34, No. 4, 1075--1081 (2007; Zbl 1142.35572) Full Text: DOI
Liu, W. Y.; Yu, Y. J.; Chen, L. D. Variational principles for Ginzburg-Landau equation by He’s semi-inverse method. (English) Zbl 1145.35459 Chaos Solitons Fractals 33, No. 5, 1801-1803 (2007). MSC: 35Q55 35A15 PDF BibTeX XML Cite \textit{W. Y. Liu} et al., Chaos Solitons Fractals 33, No. 5, 1801--1803 (2007; Zbl 1145.35459) Full Text: DOI
He, Ji-Huan Variational iteration method – some recent results and new interpretations. (English) Zbl 1119.65049 J. Comput. Appl. Math. 207, No. 1, 3-17 (2007). MSC: 65J15 65H05 47J25 34L05 34A34 65K10 49J15 PDF BibTeX XML Cite \textit{J.-H. He}, J. Comput. Appl. Math. 207, No. 1, 3--17 (2007; Zbl 1119.65049) Full Text: DOI
Inc, Mustafa An approximate solitary wave solution with compact support for the modified KdV equation. (English) Zbl 1114.65114 Appl. Math. Comput. 184, No. 2, 631-637 (2007). MSC: 65M60 65M12 35Q53 PDF BibTeX XML Cite \textit{M. Inc}, Appl. Math. Comput. 184, No. 2, 631--637 (2007; Zbl 1114.65114) Full Text: DOI
Xu, Lan Variational principles for coupled nonlinear Schrödinger equations. (English) Zbl 1236.35175 Phys. Lett., A 359, No. 6, 627-629 (2006). MSC: 35Q55 PDF BibTeX XML Cite \textit{L. Xu}, Phys. Lett., A 359, No. 6, 627--629 (2006; Zbl 1236.35175) Full Text: DOI
Abulwafa, E. M.; Abdou, M. A.; Mahmoud, A. A. The solution of nonlinear coagulation problem with mass loss. (English) Zbl 1101.82018 Chaos Solitons Fractals 29, No. 2, 313-330 (2006). Reviewer: Antonio Fasano (Firenze) MSC: 82C22 PDF BibTeX XML Cite \textit{E. M. Abulwafa} et al., Chaos Solitons Fractals 29, No. 2, 313--330 (2006; Zbl 1101.82018) Full Text: DOI
Soliman, A. A. Numerical simulation of the generalized regularized long wave equation by He’s variational iteration method. (English) Zbl 1152.65467 Math. Comput. Simul. 70, No. 2, 119-124 (2005). MSC: 65M60 35L75 PDF BibTeX XML Cite \textit{A. A. Soliman}, Math. Comput. Simul. 70, No. 2, 119--124 (2005; Zbl 1152.65467) Full Text: DOI
Abdou, M. A.; Soliman, A. A. New applications of variational iteration method. (English) Zbl 1084.35539 Physica D 211, No. 1-2, 1-8 (2005). MSC: 35Q53 35Q35 PDF BibTeX XML Cite \textit{M. A. Abdou} and \textit{A. A. Soliman}, Physica D 211, No. 1--2, 1--8 (2005; Zbl 1084.35539) Full Text: DOI
Abdou, M. A.; Soliman, A. A. Variational iteration method for solving Burgers and coupled Burgers equations. (English) Zbl 1072.65127 J. Comput. Appl. Math. 181, No. 2, 245-251 (2005). MSC: 65M60 35Q53 PDF BibTeX XML Cite \textit{M. A. Abdou} and \textit{A. A. Soliman}, J. Comput. Appl. Math. 181, No. 2, 245--251 (2005; Zbl 1072.65127) Full Text: DOI
Zhang, Juan; Yu, Jian-Yong; Pan, Ning Variational principles for nonlinear fiber optics. (English) Zbl 1135.78330 Chaos Solitons Fractals 24, No. 1, 309-311 (2005). MSC: 78A60 35Q60 35A15 PDF BibTeX XML Cite \textit{J. Zhang} et al., Chaos Solitons Fractals 24, No. 1, 309--311 (2005; Zbl 1135.78330) Full Text: DOI
Liu, Hong-Mei Generalized variational principles for ion acoustic plasma waves by He’s semi-inverse method. (English) Zbl 1135.76597 Chaos Solitons Fractals 23, No. 2, 573-576 (2005). MSC: 76X05 PDF BibTeX XML Cite \textit{H.-M. Liu}, Chaos Solitons Fractals 23, No. 2, 573--576 (2005; Zbl 1135.76597) Full Text: DOI