## Projectively equivalent metrics on the torus.(English)Zbl 1051.37030

One says that two metrics $$g_1$$ and $$g_2$$ on a smooth manifold are {projectively equivalent} if they have the same unparametrized geodesics. One says that $$g_1$$ and $$g_2$$ are strictly nonproportional at a point $$P$$ of $$M$$ if the eigenvalues of $$g_1$$ with respect to $$g_2$$ are all distinct at $$P$$. The authors show:
Theorem 1: Suppose $$M$$ is a connected closed $$n$$-dimensional manifold. Suppose there exist Riemannian metrics $$g_1$$ and $$g_2$$ on $$M$$ which are projectively equivalent and strictly nonproportional at at least one point. Then the following hold:
(1) The first Betti number $$b_1(M)$$ is at most $$n$$.
(2) The fundamental group of $$M$$ has a commutative subgroup of finite index.
(3) If there exists a point where the metrics are not strictly nonproportional, then $$b_1(M)<n$$.
Let $$T^n$$ be the $$n$$ torus. Since $$b_1(T^n)=n$$, this leads to the following:
Corollary 1: Suppose that $$g_1$$ and $$g_2$$ are metrics on $$T^n$$ which are projectively equivalent and strictly nonproportional at at least one point. Then they are strictly nonproportional at every point.
The authors use Corollary 1 to describe and classify (in a certain sense) all projectively equivalent Riemannian metrics on the torus which are strictly nonproportional at at least one point. This enables the authors to separate variables in the equation for the eigenvalues of the Laplacian for such a metric.

### MSC:

 37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests 70H06 Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics 53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related $$n$$-spaces 53B10 Projective connections
Full Text:

### References:

 [1] Beltrami, E., Resoluzione del problema: riportari i punti di una superficie sopra un piano in modo che le linee geodetische vengano rappresentante da linee rette, Ann. Mat., 1, 7, 185-204 (1865) [2] Bolsinov, A. V.; Matveev, V. S.; Fomenko, A. T., Two-dimensional Riemannian metrics with an integrable geodesic flow. Local and global geometries, Sb. Math., 189, 9-10, 1441-1466 (1998) · Zbl 0917.58031 [3] Dini, U., Sopra un problema che si presenta nella theoria generale delle rappresetazioni geografice di una superficie su un’altra, Ann. Mat. Ser. 2, 3, 269-293 (1869) [4] Hasegawa, I.; Fujimura, S., On holomorphically projective transformations of Kaehlerian manifolds, Math. Japon., 42, 1, 99-104 (1995) · Zbl 0846.53012 [5] Kiyohara, K., Compact Liouville surfaces, J. Math. Soc. Japan, 43, 555-591 (1991) · Zbl 0751.53015 [6] Levi-Civita, T., Sulle trasformazioni delle equazioni dinamiche, Ann. di Mat., Ser. 2a, 24, 255-300 (1896) [7] Lichnerowicz, A., Sur les applications harmoniques, C. R. Acad. Sci. Paris Sér. A, B, 267, A548-A553 (1968) · Zbl 0193.50003 [8] Matveev, V. S.; Topalov, P. J., Trajectory equivalence and corresponding integrals, Regular and Chaotic Dynamics, 3, 2, 30-45 (1998) · Zbl 0928.37003 [9] Matveev, V. S., Quantum integrability of the Beltrami-Laplace operator for geodesically equivalent metrics, Russian Math. Dokl., 61, 2, 216-219 (2000) · Zbl 1047.58004 [10] Matveev, V. S.; Topalov, P. J., Geodesic equivalence of metrics on surfaces, and their integrability, Dokl. Akad. Nauk, 367, 6, 736-738 (1999) · Zbl 1041.37502 [11] Matveev, V. S.; Topalov, P. J., Quantum integrability for the Beltrami-Laplace operator as geodesic equivalence, Math. Z., 238, 833-866 (2001) · Zbl 0998.53025 [12] V.S. Matveev, P.J. Topalov, Quantum integrability for the Beltrami-Laplace operator for geodesically equivalent metrics. Integrability criterium for geodesic equivalence. Separation of variables, Preprint IHES M/00/17; V.S. Matveev, P.J. Topalov, Quantum integrability for the Beltrami-Laplace operator for geodesically equivalent metrics. Integrability criterium for geodesic equivalence. Separation of variables, Preprint IHES M/00/17 [13] V.S. Matveev, Quantum integrability and complete separation of variables for projectively equivalent metrics on the torus, in: Geometry, Integrability and Quantization (Varna 2000), pp. 228-244; V.S. Matveev, Quantum integrability and complete separation of variables for projectively equivalent metrics on the torus, in: Geometry, Integrability and Quantization (Varna 2000), pp. 228-244 · Zbl 1070.53500 [14] Matveev, V. S., Commuting operators and separation of variables for Laplacians of projectively equivalent metrics, Lett. Math. Phys., 119, 193-201 (2001) · Zbl 1128.58301 [15] Matveev, V. S., Geschlossene hyperbolische 3-Mannigflatigkeiten sind geodätisch starr, Manuscripta Math., 105, 3, 343-352 (2001) · Zbl 1076.53520 [16] Mikes, J., Geodesic mappings of affine-connected and Riemannian spaces. Geometry, 2, J. Math. Sci., 78, 3, 311-333 (1996) · Zbl 0866.53028 [17] Taimanov, I. A., Topological obstructions to the integrability of geodesic flow on nonsimply connected manifold, Math. USSR-Izv., 30, 2, 403-409 (1988) · Zbl 0645.58028 [18] P.J. Topalov, V.S. Matveev, Geodesic equivalence and integrability, Preprint of Max-Planck-Institut f. Math. no. 74, 1998; P.J. Topalov, V.S. Matveev, Geodesic equivalence and integrability, Preprint of Max-Planck-Institut f. Math. no. 74, 1998 · Zbl 0928.37003 [19] Venzi, P., Geodätische Abbildungen in Riemannschen Mannigfaltigkeiten, Tensor (N.S.), 33, 3, 313-321 (1979) · Zbl 0419.53010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.