Feehan, Paul M. N.; Leness, Thomas G. An \(\mathrm{SO}(3)\)-monopole cobordism formula relating Donaldson and Seiberg-Witten invariants. (English) Zbl 07000313 Memoirs of the American Mathematical Society 1226. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-1421-4/print; 978-1-4704-4915-5/ebook). xiv, 238 p. (2018). MSC: 57-02 57N13 57R57 58D27 58D29 53C07 53C27 58J05 58J20 PDF BibTeX XML Cite \textit{P. M. N. Feehan} and \textit{T. G. Leness}, An \(\mathrm{SO}(3)\)-monopole cobordism formula relating Donaldson and Seiberg-Witten invariants. Providence, RI: American Mathematical Society (AMS) (2018; Zbl 07000313) Full Text: DOI arXiv OpenURL
Licata, Anthony; Rosso, Daniele; Savage, Alistair A graphical calculus for the Jack inner product on symmetric functions. (English) Zbl 1377.05194 J. Comb. Theory, Ser. A 155, 503-543 (2018). MSC: 05E05 PDF BibTeX XML Cite \textit{A. Licata} et al., J. Comb. Theory, Ser. A 155, 503--543 (2018; Zbl 1377.05194) Full Text: DOI arXiv OpenURL
Fujii, Shigeyuki; Minabe, Satoshi A combinatorial study on quiver varieties. (English) Zbl 1376.14015 SIGMA, Symmetry Integrability Geom. Methods Appl. 13, Paper 052, 28 p. (2017). MSC: 14D21 14C05 05A19 05E10 13D40 PDF BibTeX XML Cite \textit{S. Fujii} and \textit{S. Minabe}, SIGMA, Symmetry Integrability Geom. Methods Appl. 13, Paper 052, 28 p. (2017; Zbl 1376.14015) Full Text: DOI arXiv OpenURL
Pedrini, Mattia; Sala, Francesco; Szabo, Richard J. AGT relations for abelian quiver gauge theories on ALE spaces. (English) Zbl 1332.14022 J. Geom. Phys. 103, 43-89 (2016). MSC: 14D20 14D21 14J80 81T13 81T60 PDF BibTeX XML Cite \textit{M. Pedrini} et al., J. Geom. Phys. 103, 43--89 (2016; Zbl 1332.14022) Full Text: DOI arXiv OpenURL
Wang, Zhilan; Zhou, Jian Tautological sheaves on Hilbert schemes of points. (English) Zbl 1327.14028 J. Algebr. Geom. 23, No. 4, 669-692 (2014). MSC: 14C05 14J60 PDF BibTeX XML Cite \textit{Z. Wang} and \textit{J. Zhou}, J. Algebr. Geom. 23, No. 4, 669--692 (2014; Zbl 1327.14028) Full Text: DOI OpenURL
Morozov, Alexei; Smirnov, Andrey Towards the proof of AGT relations with the help of the generalized Jack polynomials. (English) Zbl 1296.81113 Lett. Math. Phys. 104, No. 5, 585-612 (2014). MSC: 81T40 81T60 05E05 81T13 14D21 81R10 PDF BibTeX XML Cite \textit{A. Morozov} and \textit{A. Smirnov}, Lett. Math. Phys. 104, No. 5, 585--612 (2014; Zbl 1296.81113) Full Text: DOI arXiv OpenURL
Cheong, Wan Keng Strengthening the cohomological crepant resolution conjecture for Hilbert-Chow morphisms. (English) Zbl 1277.14044 Math. Ann. 356, No. 1, 45-72 (2013). Reviewer: Amin Gholampour (College Park) MSC: 14N35 14E15 14H10 PDF BibTeX XML Cite \textit{W. K. Cheong}, Math. Ann. 356, No. 1, 45--72 (2013; Zbl 1277.14044) Full Text: DOI arXiv OpenURL
Belavin, A. A.; Bershtein, M. A.; Feigin, B. L.; Litvinov, A. V.; Tarnopolsky, G. M. Instanton moduli spaces and bases in coset conformal field theory. (English) Zbl 1263.81252 Commun. Math. Phys. 319, No. 1, 269-301 (2013). MSC: 81T40 14D21 81T60 22E70 PDF BibTeX XML Cite \textit{A. A. Belavin} et al., Commun. Math. Phys. 319, No. 1, 269--301 (2013; Zbl 1263.81252) Full Text: DOI arXiv OpenURL
Carlsson, Erik; Okounkov, Andrei Exts and vertex operators. (English) Zbl 1256.14010 Duke Math. J. 161, No. 9, 1797-1815 (2012). Reviewer: Sergiy Koshkin (Houston) MSC: 14D21 PDF BibTeX XML Cite \textit{E. Carlsson} and \textit{A. Okounkov}, Duke Math. J. 161, No. 9, 1797--1815 (2012; Zbl 1256.14010) Full Text: DOI arXiv Euclid OpenURL
Cheong, Wan Keng; Gholampour, Amin Orbifold Gromov-Witten theory of the symmetric product of \(\mathcal A_{r}\). (English) Zbl 1245.14055 Geom. Topol. 16, No. 1, 475-527 (2012). Reviewer: Vehbi Emrah Paksoy (Fort Lauderdale) MSC: 14N35 14H10 PDF BibTeX XML Cite \textit{W. K. Cheong} and \textit{A. Gholampour}, Geom. Topol. 16, No. 1, 475--527 (2012; Zbl 1245.14055) Full Text: DOI arXiv OpenURL
Carlsson, Erik Vertex operators and quasimodularity of Chern numbers on the Hilbert scheme. (English) Zbl 1255.14005 Adv. Math. 229, No. 5, 2888-2907 (2012). Reviewer: Eugene Gorsky (Stony Brook) MSC: 14C05 17B69 17B65 PDF BibTeX XML Cite \textit{E. Carlsson}, Adv. Math. 229, No. 5, 2888--2907 (2012; Zbl 1255.14005) Full Text: DOI OpenURL
Feigin, B. L.; Tsymbaliuk, A. I. Equivariant \(K\)-theory of Hilbert schemes via shuffle algebra. (English) Zbl 1242.14006 Kyoto J. Math. 51, No. 4, 831-854 (2011). Reviewer: Volodymyr Mazorchuk (Uppsala) MSC: 14C05 19E08 17B69 PDF BibTeX XML Cite \textit{B. L. Feigin} and \textit{A. I. Tsymbaliuk}, Kyoto J. Math. 51, No. 4, 831--854 (2011; Zbl 1242.14006) Full Text: DOI arXiv OpenURL
Okounkov, A.; Pandharipande, R. The quantum differential equation of the Hilbert scheme of points in the plane. (English) Zbl 1213.14108 Transform. Groups 15, No. 4, 965-982 (2010). Reviewer: Dragos Oprea (La Jolla) MSC: 14N35 14C05 14J81 PDF BibTeX XML Cite \textit{A. Okounkov} and \textit{R. Pandharipande}, Transform. Groups 15, No. 4, 965--982 (2010; Zbl 1213.14108) Full Text: DOI arXiv OpenURL
Carlsson, Erik Vertex operators, Grassmannians, and Hilbert schemes. (English) Zbl 1213.14104 Commun. Math. Phys. 300, No. 3, 599-613 (2010). Reviewer: Zhenbo Qin (Columbia) MSC: 14N35 17B69 14C05 14M15 PDF BibTeX XML Cite \textit{E. Carlsson}, Commun. Math. Phys. 300, No. 3, 599--613 (2010; Zbl 1213.14104) Full Text: DOI arXiv OpenURL
Li, Wei-Ping; Qin, Zhenbo Equivariant cohomology of incidence Hilbert schemes and infinite dimensional Lie algebras. (English) Zbl 1258.14005 Manuscr. Math. 133, No. 3-4, 519-544 (2010). MSC: 14C05 14F43 17B65 PDF BibTeX XML Cite \textit{W.-P. Li} and \textit{Z. Qin}, Manuscr. Math. 133, No. 3--4, 519--544 (2010; Zbl 1258.14005) Full Text: DOI arXiv OpenURL
Maulik, Davesh; Oblomkov, Alexei Quantum cohomology of the Hilbert scheme of points on \(\mathcal {A}_n\)-resolutions. (English) Zbl 1215.14055 J. Am. Math. Soc. 22, No. 4, 1055-1091 (2009). Reviewer: Sergiy Koshkin (Houston) MSC: 14N35 PDF BibTeX XML Cite \textit{D. Maulik} and \textit{A. Oblomkov}, J. Am. Math. Soc. 22, No. 4, 1055--1091 (2009; Zbl 1215.14055) Full Text: DOI arXiv OpenURL
Commichau, Michael Deformation kompakter komplexer Mannigfaltigkeiten. (German) Zbl 0285.32014 Math. Ann. 213, 43-96 (1975). MSC: 32G13 32G05 32K05 PDF BibTeX XML Cite \textit{M. Commichau}, Math. Ann. 213, 43--96 (1975; Zbl 0285.32014) Full Text: DOI EuDML OpenURL