×

The real spectrum of the imaginary cubic oscillator: an expository proof. (English) Zbl 1305.81082

Summary: We give a partially alternate proof of reality of the spectrum of the imaginary cubic oscillator in quantum mechanics.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bender C.M.: Making sense of non-hermitian hamiltonians. Rept. Prog. Phys. 70, 947 (2007) · Zbl 1143.81312 · doi:10.1088/0034-4885/70/6/R03
[2] Bender C.M., Boettcher S.: Real spectra in non-hermitian hamiltonians having PT-Symmetry. Phys. Rev. Lett. 80, 5243 (1998) · Zbl 0947.81018 · doi:10.1103/PhysRevLett.80.5243
[3] Caliceti E., Graffi S., Maioli M.: Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys. 75, 51 (1980) · Zbl 0446.47044 · doi:10.1007/BF01962591
[4] Conway J.B.: Functions of One Complex Variable. Springer, Berlin (1978) · doi:10.1007/978-1-4612-6313-5
[5] Dorey P., Dunning C., Tateo R.: Spectral equivalences, Bethe ansatz equations, and reality properties in PT-symmetric quantum mechanics. J. Phys. A 34, 5679 (2001) · Zbl 0982.81021 · doi:10.1088/0305-4470/34/28/305
[6] Grecchi V., Martinez A.: The spectrum of the cubic oscillator. Commun. Math. Phys. 319, 479 (2013) · Zbl 1268.81073 · doi:10.1007/s00220-012-1559-z
[7] Henry, R.: Spectral projections of the complex cubic oscillator. Ann. Henri Poincaré Online First. doi:10.1007/s00023-013-0292-2 · Zbl 0376.47021
[8] Hunziker W.: Notes on asymptotic perturbation theory for Schrödinger eigenvalue problems. Helv. Phys. Acta 61, 257 (1988)
[9] Kato T.: On some Schrödinger operators with a singular complex potential. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(4), 105 (1978) · Zbl 0376.47021
[10] Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980) · Zbl 0435.47001
[11] Mostafazadeh, A.: A critique of PT-symmetric quantum mechanics. arXiv: quant-ph/0310164 · Zbl 1064.81057
[12] Olver F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974) · Zbl 0303.41035
[13] Reed M., Simon B.: Methods of Modern Mathematical Physics. vol. 4, Analysis of Operators. Academic Press, London (1978) · Zbl 0401.47001
[14] Shin K.C.: On the reality of the eigenvalues for a class of PT-symmetric oscillators. Commun. Math. Phys. 229, 543 (2002) · Zbl 1017.34083 · doi:10.1007/s00220-002-0706-3
[15] Sibuya Y.: Global Theory of a Second Order Linear Ordinary Differential Equation with a Polynomial Coefficient. North-Holland Publishing Company, Amsterdam (1975) · Zbl 0322.34006
[16] Siegl P., Krejčiřík D.: On the metric operator for the imaginary cubic oscillator. Phys. Rev. D 86, 121702(R) (2012) · doi:10.1103/PhysRevD.86.121702
[17] Trinh D.T.: Remarks on PT-pseudo-norm in PT-symmetric quantum mechanics. J. Phys. A 38, 3665 (2005) · Zbl 1065.81052 · doi:10.1088/0305-4470/38/16/014
[18] Trinh D.T.: On the simpleness of zeros of Stokes multipliers. J. Diff. Equ. 223, 351 (2006) · Zbl 1100.34068 · doi:10.1016/j.jde.2005.07.020
[19] Zinn-Justin J., Jentschura U.D.: Imaginary cubic perturbation: numerical and analytic study. J. Phys. A 43, 425301 (2010) · Zbl 1201.81058 · doi:10.1088/1751-8113/43/42/425301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.