×

Autocalibration with the minimum number of cameras with known pixel shape. (English) Zbl 1312.68203

Summary: In 3D reconstruction, the recovery of the calibration parameters of the cameras is paramount since it provides metric information about the observed scene, e.g., measures of angles and ratios of distances. Autocalibration enables the estimation of the camera parameters without using a calibration device, but by enforcing simple constraints on the camera parameters. In the absence of information about the internal camera parameters such as the focal length and the principal point, the knowledge of the camera pixel shape is usually the only available constraint. Given a projective reconstruction of a rigid scene, we address the problem of the autocalibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. We propose an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient way. This parameterization is then used to solve autocalibration from five or more cameras, reducing the three-dimensional search space to a two-dimensional one. We provide experiments with real images showing the good performance of the technique.

MSC:

68T45 Machine vision and scene understanding
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68U10 Computing methodologies for image processing

Software:

OpenCV
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Bôcher, M.: Introduction to Higher Algebra. Dover Phoenix Editions. Dover, New York (2004) · Zbl 0131.24804
[2] Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools (2000)
[3] Carballeira, P.; Ronda, J. I.; Valdés, A., 3D reconstruction with uncalibrated cameras using the six-line conic variety, 205-208 (2008)
[4] Faugeras, O.: Three Dimensional Computer Vision. MIT Press, Cambridge (1993)
[5] Faugeras, O.: Stratification of 3-D vision: projective, affine, and metric representations. J. Opt. Soc. Am. A 12(46), 548 (1995)
[6] Faugeras, O.; Luong, Q.; Maybank, S., Camera self-calibration: theory and experiments, No. 588, 321-334 (1992), Berlin
[7] Faugeras, O., Luong, Q.T., Papadopoulou, T.: The Geometry of Multiple Images: the Laws that Govern the Formation of Images of a Scene and Some of Their Applications. MIT Press, Cambridge (2001) · Zbl 1002.68183
[8] Finsterwalder, S.: Die geometrischen grundlagen der photogrammetrie. Jahresber. Dtsch. Math.-Ver. 6, 1-42 (1897). http://eudml.org/doc/144606 · JFM 30.0471.03
[9] Furukawa, Y.; Ponce, J., Accurate, dense, and robust multi-view stereopsis (2007)
[10] Hartley, R.: Projective reconstruction and invariants from multiple images. IEEE Trans. Pattern Anal. Mach. Intell. 16(10), 1036-1041 (1994) · doi:10.1109/34.329005
[11] Hartley, R.; Gupta, R.; Chang, T., Stereo from uncalibrated cameras, 761-764 (1992)
[12] Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003) · Zbl 0956.68149
[13] Hartley, R.I.: Chirality. Int. J. Comput. Vis. 26(1), 41-61 (1998) · doi:10.1023/A:1007984508483
[14] Hartley, R. I.; Hayman, E.; Agapito, L.; Reid, I., Camera calibration and the search for infinity, No. 1, 510 (1999)
[15] Hemayed, E., A survey of camera self-calibration, 351-357 (2003) · doi:10.1109/AVSS.2003.1217942
[16] Heyden, A.; Åström, K., Euclidean reconstruction from image sequences with varying and unknown focal length and principal point (1997)
[17] Longuet-Higgins, H.C.: A computer algorithm for reconstructing a scene from two projections. Nature 293, 133-135 (1981) · doi:10.1038/293133a0
[18] Lowe, D., Object recognition from local scale-invariant features, 1150-1157 (1999)
[19] Luong, Q.T., Viéville, T.: Canonical representations for the geometries of multiple projective views. Comput. Vis. Image Underst. 64, 193-229 (1996) · doi:10.1006/cviu.1996.0055
[20] Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3-D Vision. Springer, Berlin (2003) · Zbl 1043.65040
[21] Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vis. 8(2), 123-151 (1992) · doi:10.1007/BF00127171
[22] Mohr, R.; Veillon, F.; Quan, L., Relative 3D reconstruction using multiple uncalibrated images, 543-548 (1993) · doi:10.1109/CVPR.1993.341077
[23] Pollefeys, M.; Gool, L. V., A stratified approach to metric self-calibration, 407-412 (1997)
[24] Pollefeys, M., Koch, R., van Gool, L.: Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. Int. J. Comput. Vis. 1(32), 7-25 (1999) · doi:10.1023/A:1008109111715
[25] Ponce, J.; McHenry, K.; Papadopoulo, T.; Teillaud, M.; Triggs, B., On the absolute quadratic complex and its application to autocalibration, No. 1, 780-787 (2005)
[26] Quan, L., Invariants of 6 points from 3 uncalibrated images, No. 801, 459-470 (1994), Berlin
[27] Ronda, J.I., Valdés, A., Gallego, G.: Line geometry and camera autocalibration. J. Math. Imaging Vis. 32(2), 193-214 (2008) · Zbl 1523.68118 · doi:10.1007/s10851-008-0095-0
[28] Schröcker, H.P.: Intersection conics of six straight lines. Beitr. Algebra Geom. 46(2), 435-446 (2005) · Zbl 1090.51008
[29] Seo, Y.; Heyden, A., Auto-calibration from the orthogonality constraints, No. 1, 1067-1071 (2000)
[30] Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from Internet photo collections. Int. J. Comput. Vis. 80(2), 189-210 (2008) · doi:10.1007/s11263-007-0107-3
[31] Sturm, P.: A case against Kruppa’s equations for camera self-calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1199-1204 (2000) · doi:10.1109/34.879804
[32] Sturm, P., A historical survey of geometric computer vision, No. 6854, 1-8 (2011), Berlin · doi:10.1007/978-3-642-23672-3_1
[33] Tresadern, P.A., Reid, I.D.: Camera calibration from human motion. Image Vis. Comput. 26(6), 851-862 (2008) · doi:10.1016/j.imavis.2007.10.001
[34] Triggs, B.: The geometry of projective reconstruction I: Matching constraints and the joint image. Int. J. Comput. Vision, 338-343 (1995)
[35] Triggs, B., Autocalibration and the absolute quadric, 609-614 (1997) · doi:10.1109/CVPR.1997.609388
[36] Triggs, B.; McLauchlan, P.; Hartley, R.; Fitzgibbon, A., Bundle adjustment—a modern synthesis, No. 1883, 153-177 (2000), Berlin · doi:10.1007/3-540-44480-7
[37] Valdés, A.; Ronda, J. I.; Gallego, G., Linear camera autocalibration with varying parameters, No. 5, 3395-3398 (2004)
[38] Valdés, A., Ronda, J.I., Gallego, G.: The absolute line quadric and camera autocalibration. Int. J. Comput. Vis. 66(3), 283-303 (2006) · Zbl 1477.68495 · doi:10.1007/s11263-005-3677-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.