Romani, Lucia Creating a bridge between cardinal B\(r\)-spline fundamental functions for interpolation and subdivision. (English) Zbl 07423543 Appl. Math. Comput. 401, Article ID 126071, 19 p. (2021). MSC: 65Dxx PDF BibTeX XML Cite \textit{L. Romani}, Appl. Math. Comput. 401, Article ID 126071, 19 p. (2021; Zbl 07423543) Full Text: DOI OpenURL
Kui, Zhiqing; Baccou, Jean; Liandrat, Jacques On the construction of multiresolution analyses associated to general subdivision schemes. (English) Zbl 07369108 Math. Comput. 90, No. 331, 2185-2208 (2021). MSC: 65Dxx 42Cxx 41A05 41A10 PDF BibTeX XML Cite \textit{Z. Kui} et al., Math. Comput. 90, No. 331, 2185--2208 (2021; Zbl 07369108) Full Text: DOI HAL OpenURL
Amat, Sergio; Magreñán, Ángel A.; Ruiz, Juan; Trillo, Juan C.; Yáñez, Dionisio F. On the application of Lehmer means in signal and image processing. (English) Zbl 1496.94006 Int. J. Comput. Math. 97, No. 7, 1503-1528 (2020). MSC: 94A08 94A12 41A05 41A10 65D05 PDF BibTeX XML Cite \textit{S. Amat} et al., Int. J. Comput. Math. 97, No. 7, 1503--1528 (2020; Zbl 1496.94006) Full Text: DOI OpenURL
Amat, Sergio; Ruiz, Juan; Trillo, Juan C.; Yáñez, Dionisio F. On a family of non-oscillatory subdivision schemes having regularity \(C^r\) with \(r > 1\). (English) Zbl 1462.65018 Numer. Algorithms 85, No. 2, 543-569 (2020). MSC: 65D05 65D17 41A05 PDF BibTeX XML Cite \textit{S. Amat} et al., Numer. Algorithms 85, No. 2, 543--569 (2020; Zbl 1462.65018) Full Text: DOI OpenURL
Romani, Lucia; Viscardi, Alberto Dual univariate interpolatory subdivision of every arity: algebraic characterization and construction. (English) Zbl 1455.65025 J. Math. Anal. Appl. 484, No. 1, Article ID 123713, 27 p. (2020). MSC: 65D05 42A15 PDF BibTeX XML Cite \textit{L. Romani} and \textit{A. Viscardi}, J. Math. Anal. Appl. 484, No. 1, Article ID 123713, 27 p. (2020; Zbl 1455.65025) Full Text: DOI arXiv OpenURL
Ghaffar, Abdul; Ullah, Zafar; Bari, Mehwish; Nisar, Kottakkaran Sooppy; Al-Qurashi, Maysaa M.; Baleanu, Dumitru A new class of \(2m\)-point binary non-stationary subdivision schemes. (English) Zbl 1485.41002 Adv. Difference Equ. 2019, Paper No. 325, 19 p. (2019). MSC: 41A05 41A25 41A30 65D17 65D10 40A05 52B55 PDF BibTeX XML Cite \textit{A. Ghaffar} et al., Adv. Difference Equ. 2019, Paper No. 325, 19 p. (2019; Zbl 1485.41002) Full Text: DOI OpenURL
Amat, Sergio; Ruiz, Juan; Trillo, J. Carlos; Yáñez, Dionisio F. On a stable family of four-point nonlinear subdivision schemes eliminating the Gibbs phenomenon. (English) Zbl 1415.65038 J. Comput. Appl. Math. 354, 310-325 (2019). MSC: 65D17 41A05 65D05 PDF BibTeX XML Cite \textit{S. Amat} et al., J. Comput. Appl. Math. 354, 310--325 (2019; Zbl 1415.65038) Full Text: DOI OpenURL
Kui, Zhiqing; Baccou, Jean; Liandrat, Jacques Construction of finite-dimensional multiresolutions based on linear subdivision schemes: application to the 4-point shifted Lagrange scheme. (English) Zbl 1451.65245 J. Comput. Appl. Math. 349, 494-507 (2019). MSC: 65T60 42C40 PDF BibTeX XML Cite \textit{Z. Kui} et al., J. Comput. Appl. Math. 349, 494--507 (2019; Zbl 1451.65245) Full Text: DOI OpenURL
Deng, Chongyang; Xu, Huixia; Ma, Weiyin; Li, Yajuan Repeated local operations and associated interpolation properties of dual \(2n\)-point subdivision schemes. (English) Zbl 07006434 J. Comput. Appl. Math. 349, 344-353 (2019). MSC: 65D18 65D17 65D07 41A15 68U05 PDF BibTeX XML Cite \textit{C. Deng} et al., J. Comput. Appl. Math. 349, 344--353 (2019; Zbl 07006434) Full Text: DOI OpenURL
Mustafa, Ghulam; Asghar, Muhammad; Naveed, Madiha A new paradigm for increasing the continuity of subdivision schemes. (English) Zbl 1448.65018 J. Prime Res. Math. 14, 37-50 (2018). MSC: 65D17 65D15 PDF BibTeX XML Cite \textit{G. Mustafa} et al., J. Prime Res. Math. 14, 37--50 (2018; Zbl 1448.65018) Full Text: Link OpenURL
Asghar, Muhammad; Mustafa, Ghulam Family of \(a\)-ary univariate subdivision schemes generated by Laurent polynomial. (English) Zbl 1427.65018 Math. Probl. Eng. 2018, Article ID 7824279, 11 p. (2018). MSC: 65D17 65D18 41A15 PDF BibTeX XML Cite \textit{M. Asghar} and \textit{G. Mustafa}, Math. Probl. Eng. 2018, Article ID 7824279, 11 p. (2018; Zbl 1427.65018) Full Text: DOI OpenURL
Shi, Jun; Tan, Jieqing; Liu, Zhi; Zhang, Li A new variant of Lane-Riesenfeld algorithm with two tension parameters. (English) Zbl 07003476 Comput. Aided Geom. Des. 64, 27-36 (2018). MSC: 65Dxx PDF BibTeX XML Cite \textit{J. Shi} et al., Comput. Aided Geom. Des. 64, 27--36 (2018; Zbl 07003476) Full Text: DOI OpenURL
Muntingh, Georg Symbols and exact regularity of symmetric pseudo-splines of any arity. (English) Zbl 1435.65028 BIT 57, No. 3, 867-900 (2017). Reviewer: Nicoleta Breaz (Alba Iulia) MSC: 65D07 65D10 26A16 PDF BibTeX XML Cite \textit{G. Muntingh}, BIT 57, No. 3, 867--900 (2017; Zbl 1435.65028) Full Text: DOI arXiv OpenURL
Absil, P.-A.; Gousenbourger, Pierre-Yves; Striewski, Paul; Wirth, Benedikt Differentiable piecewise-Bézier surfaces on Riemannian manifolds. (English) Zbl 1354.65028 SIAM J. Imaging Sci. 9, No. 4, 1788-1828 (2016). MSC: 65D17 53C25 65D07 PDF BibTeX XML Cite \textit{P. A. Absil} et al., SIAM J. Imaging Sci. 9, No. 4, 1788--1828 (2016; Zbl 1354.65028) Full Text: DOI OpenURL
Rehan, Kashif; Siddiqi, Shahid S. A combined binary 6-point subdivision scheme. (English) Zbl 1410.65051 Appl. Math. Comput. 270, 130-135 (2015). MSC: 65D17 65D10 PDF BibTeX XML Cite \textit{K. Rehan} and \textit{S. S. Siddiqi}, Appl. Math. Comput. 270, 130--135 (2015; Zbl 1410.65051) Full Text: DOI OpenURL
Rehan, Kashif; Siddiqi, Shahid S. A family of ternary subdivision schemes for curves. (English) Zbl 1410.65050 Appl. Math. Comput. 270, 114-123 (2015). MSC: 65D17 41A05 65D10 PDF BibTeX XML Cite \textit{K. Rehan} and \textit{S. S. Siddiqi}, Appl. Math. Comput. 270, 114--123 (2015; Zbl 1410.65050) Full Text: DOI OpenURL
Dyn, Nira; Heard, Allison; Hormann, Kai; Sharon, Nir Univariate subdivision schemes for noisy data with geometric applications. (English) Zbl 1417.65079 Comput. Aided Geom. Des. 37, 85-104 (2015). MSC: 65D17 65D18 PDF BibTeX XML Cite \textit{N. Dyn} et al., Comput. Aided Geom. Des. 37, 85--104 (2015; Zbl 1417.65079) Full Text: DOI OpenURL
Romani, Lucia A Chaikin-based variant of Lane-Riesenfeld algorithm and its non-tensor product extension. (English) Zbl 1417.65108 Comput. Aided Geom. Des. 32, 22-49 (2015). MSC: 65D18 PDF BibTeX XML Cite \textit{L. Romani}, Comput. Aided Geom. Des. 32, 22--49 (2015; Zbl 1417.65108) Full Text: DOI OpenURL
Siddiqi, Shahid S.; us Salam, Wardat; Rehan, Kashif Binary 3-point and 4-point non-stationary subdivision schemes using hyperbolic function. (English) Zbl 1338.65053 Appl. Math. Comput. 258, 120-129 (2015). MSC: 65D17 PDF BibTeX XML Cite \textit{S. S. Siddiqi} et al., Appl. Math. Comput. 258, 120--129 (2015; Zbl 1338.65053) Full Text: DOI OpenURL
Siddiqi, Shahid S.; Rehan, Kashif Ternary \(2N\)-point Lagrange subdivision schemes. (English) Zbl 1338.65052 Appl. Math. Comput. 249, 444-452 (2014). MSC: 65D17 PDF BibTeX XML Cite \textit{S. S. Siddiqi} and \textit{K. Rehan}, Appl. Math. Comput. 249, 444--452 (2014; Zbl 1338.65052) Full Text: DOI OpenURL
Charina, Maria; Conti, Costanza; Romani, Lucia Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix. (English) Zbl 1295.65018 Numer. Math. 127, No. 2, 223-254 (2014). Reviewer: Kai Diethelm (Braunschweig) MSC: 65D18 41A35 PDF BibTeX XML Cite \textit{M. Charina} et al., Numer. Math. 127, No. 2, 223--254 (2014; Zbl 1295.65018) Full Text: DOI arXiv OpenURL
Conti, Costanza; Romani, Lucia Dual univariate \(m\)-ary subdivision schemes of de Rham-type. (English) Zbl 1306.65163 J. Math. Anal. Appl. 407, No. 2, 443-456 (2013). MSC: 65D17 65D18 PDF BibTeX XML Cite \textit{C. Conti} and \textit{L. Romani}, J. Math. Anal. Appl. 407, No. 2, 443--456 (2013; Zbl 1306.65163) Full Text: DOI OpenURL
Li, Bao-jun; Yu, Zhi-ling; Yu, Bo-wen; Su, Zhi-xun; Liu, Xiu-ping Non-stationary subdivision for exponential polynomials reproduction. (English) Zbl 1280.65025 Acta Math. Appl. Sin., Engl. Ser. 29, No. 3, 567-578 (2013). Reviewer: H. P. Dikshit (Bhopal) MSC: 65D18 PDF BibTeX XML Cite \textit{B.-j. Li} et al., Acta Math. Appl. Sin., Engl. Ser. 29, No. 3, 567--578 (2013; Zbl 1280.65025) Full Text: DOI OpenURL
Itai, Uri; Sharon, Nir Subdivision schemes for positive definite matrices. (English) Zbl 1280.41002 Found. Comput. Math. 13, No. 3, 347-369 (2013). Reviewer: Martin D. Buhmann (Gießen) MSC: 41A05 65D05 65D10 PDF BibTeX XML Cite \textit{U. Itai} and \textit{N. Sharon}, Found. Comput. Math. 13, No. 3, 347--369 (2013; Zbl 1280.41002) Full Text: DOI OpenURL
Aslam, Muhammad; Abeysinghe, W. P. Odd-ary approximating subdivision schemes and RS strategy for irregular dense initial data. (English) Zbl 1245.65023 ISRN Math. Anal. 2012, Article ID 745096, 8 p. (2012). MSC: 65D18 PDF BibTeX XML Cite \textit{M. Aslam} and \textit{W. P. Abeysinghe}, ISRN Math. Anal. 2012, Article ID 745096, 8 p. (2012; Zbl 1245.65023) Full Text: DOI OpenURL
Hao, Yong-Xia; Wang, Ren-Hong; Li, Chong-Jun Analysis of a 6-point binary subdivision scheme. (English) Zbl 1244.65021 Appl. Math. Comput. 218, No. 7, 3209-3216 (2011). MSC: 65D17 PDF BibTeX XML Cite \textit{Y.-X. Hao} et al., Appl. Math. Comput. 218, No. 7, 3209--3216 (2011; Zbl 1244.65021) Full Text: DOI OpenURL
Mustafa, Ghulam; Khan, Faheem; Hashmi, Muhammad Sadia; Afzal, Muhammad Zeshan A unified three point approximating subdivision scheme. (English) Zbl 1249.65030 Anal. Theory Appl. 27, No. 1, 10-20 (2011). MSC: 65D17 PDF BibTeX XML Cite \textit{G. Mustafa} et al., Anal. Theory Appl. 27, No. 1, 10--20 (2011; Zbl 1249.65030) Full Text: DOI OpenURL
Shen, Yi; Li, Song Wavelets and framelets from dual pseudo splines. (English) Zbl 1235.42035 Sci. China, Math. 54, No. 6, 1233-1242 (2011). Reviewer: S. F. Lukomskii (Saratov) MSC: 42C40 65T60 41A45 65D07 PDF BibTeX XML Cite \textit{Y. Shen} and \textit{S. Li}, Sci. China, Math. 54, No. 6, 1233--1242 (2011; Zbl 1235.42035) Full Text: DOI arXiv OpenURL
Harizanov, S.; Oswald, P.; Shingel, T. Normal multi-scale transforms for curves. (English) Zbl 1242.65033 Found. Comput. Math. 11, No. 6, 617-656 (2011). Reviewer: Jason Hanson (Redmond) MSC: 65D17 65D15 PDF BibTeX XML Cite \textit{S. Harizanov} et al., Found. Comput. Math. 11, No. 6, 617--656 (2011; Zbl 1242.65033) Full Text: DOI OpenURL
Amat, S.; Dadourian, K.; Liandrat, J. On a nonlinear subdivision scheme avoiding Gibbs oscillations and converging towards \(C^{s}\) functions with \(s>1\). (English) Zbl 1217.41002 Math. Comput. 80, No. 274, 959-971 (2011). Reviewer: Antonio López-Carmona (Granada) MSC: 41A05 65D05 PDF BibTeX XML Cite \textit{S. Amat} et al., Math. Comput. 80, No. 274, 959--971 (2011; Zbl 1217.41002) Full Text: DOI OpenURL
Conti, Costanza; Hormann, Kai Polynomial reproduction for univariate subdivision schemes of any arity. (English) Zbl 1211.65022 J. Approx. Theory 163, No. 4, 413-437 (2011). Reviewer: Francisco Pérez Acosta (La Laguna) MSC: 65D18 PDF BibTeX XML Cite \textit{C. Conti} and \textit{K. Hormann}, J. Approx. Theory 163, No. 4, 413--437 (2011; Zbl 1211.65022) Full Text: DOI Link OpenURL
Deng, Chongyang; Wang, Guozhao Incenter subdivision scheme for curve interpolation. (English) Zbl 1213.65032 Comput. Aided Geom. Des. 27, No. 1, 48-59 (2010). Reviewer: Dan Bārbosu (Baia Mare) MSC: 65D18 65D05 PDF BibTeX XML Cite \textit{C. Deng} and \textit{G. Wang}, Comput. Aided Geom. Des. 27, No. 1, 48--59 (2010; Zbl 1213.65032) Full Text: DOI OpenURL
Siddiqi, Shahid S.; Rehan, Kashif A ternary three-point scheme for curve designing. (English) Zbl 1205.65107 Int. J. Comput. Math. 87, No. 8, 1709-1715 (2010). Reviewer: Juan Monterde (Burjasot) MSC: 65D17 65D10 41A25 41A05 PDF BibTeX XML Cite \textit{S. S. Siddiqi} and \textit{K. Rehan}, Int. J. Comput. Math. 87, No. 8, 1709--1715 (2010; Zbl 1205.65107) Full Text: DOI OpenURL
Siddiqi, Shahid S.; Rehan, Kashif Improved binary four point subdivision scheme and new corner cutting scheme. (English) Zbl 1193.65015 Comput. Math. Appl. 59, No. 8, 2647-2657 (2010). MSC: 65D05 41A05 65D17 PDF BibTeX XML Cite \textit{S. S. Siddiqi} and \textit{K. Rehan}, Comput. Math. Appl. 59, No. 8, 2647--2657 (2010; Zbl 1193.65015) Full Text: DOI OpenURL
Dong, Bin; Dyn, Nira; Hormann, Kai Properties of dual pseudo-splines. (English) Zbl 1191.41003 Appl. Comput. Harmon. Anal. 29, No. 1, 104-110 (2010). MSC: 41A15 41A05 PDF BibTeX XML Cite \textit{B. Dong} et al., Appl. Comput. Harmon. Anal. 29, No. 1, 104--110 (2010; Zbl 1191.41003) Full Text: DOI Link OpenURL
Conti, Costanza; Romani, Lucia Affine combination of B-spline subdivision masks and its non-stationary counterparts. (English) Zbl 1202.65026 BIT 50, No. 2, 269-299 (2010). Reviewer: Jason Hanson (Redmond) MSC: 65D18 65D07 65D05 PDF BibTeX XML Cite \textit{C. Conti} and \textit{L. Romani}, BIT 50, No. 2, 269--299 (2010; Zbl 1202.65026) Full Text: DOI OpenURL
Siddiqi, Shahid S.; Rehan, Kashif Modified form of binary and ternary 3-point subdivision schemes. (English) Zbl 1198.65042 Appl. Math. Comput. 216, No. 3, 970-982 (2010). Reviewer: Ivana Linkeová (Praha) MSC: 65D17 65D18 PDF BibTeX XML Cite \textit{S. S. Siddiqi} and \textit{K. Rehan}, Appl. Math. Comput. 216, No. 3, 970--982 (2010; Zbl 1198.65042) Full Text: DOI OpenURL
Deng, Chongyang; Wang, Guozhao Generating planar spiral by geometry driven subdivision scheme. (English) Zbl 1192.68739 Sci. China, Ser. F 52, No. 10, 1821-1829 (2009). MSC: 68U05 PDF BibTeX XML Cite \textit{C. Deng} and \textit{G. Wang}, Sci. China, Ser. F 52, No. 10, 1821--1829 (2009; Zbl 1192.68739) Full Text: DOI OpenURL
Mustafa, Ghulam; Khan, Faheem A new 4-point \(C^{3}\) quaternary approximating subdivision scheme. (English) Zbl 1167.65342 Abstr. Appl. Anal. 2009, Article ID 301967, 14 p. (2009). MSC: 65D18 PDF BibTeX XML Cite \textit{G. Mustafa} and \textit{F. Khan}, Abstr. Appl. Anal. 2009, Article ID 301967, 14 p. (2009; Zbl 1167.65342) Full Text: DOI EuDML OpenURL
Hormann, Kai; Sabin, Malcolm A. A family of subdivision schemes with cubic precision. (English) Zbl 1172.65308 Comput. Aided Geom. Des. 25, No. 1, 41-52 (2008). MSC: 65D05 PDF BibTeX XML Cite \textit{K. Hormann} and \textit{M. A. Sabin}, Comput. Aided Geom. Des. 25, No. 1, 41--52 (2008; Zbl 1172.65308) Full Text: DOI OpenURL
Dyn, Nira; Hormann, Kai; Sabin, Malcolm A.; Shen, Zuowei Polynomial reproduction by symmetric subdivision schemes. (English) Zbl 1159.41003 J. Approx. Theory 155, No. 1, 28-42 (2008). Reviewer: Martin D. Buhmann (Gießen) MSC: 41A15 41A05 PDF BibTeX XML Cite \textit{N. Dyn} et al., J. Approx. Theory 155, No. 1, 28--42 (2008; Zbl 1159.41003) Full Text: DOI OpenURL
Siddiqi, Shahid S.; Ahmad, Nadeem A \(C^6\) approximating subdivision scheme. (English) Zbl 1152.65411 Appl. Math. Lett. 21, No. 7, 722-728 (2008). MSC: 65D17 PDF BibTeX XML Cite \textit{S. S. Siddiqi} and \textit{N. Ahmad}, Appl. Math. Lett. 21, No. 7, 722--728 (2008; Zbl 1152.65411) Full Text: DOI OpenURL
Beccari, C.; Casciola, G.; Romani, L. A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics. (English) Zbl 1171.65325 Comput. Aided Geom. Des. 24, No. 1, 1-9 (2007). MSC: 65D17 PDF BibTeX XML Cite \textit{C. Beccari} et al., Comput. Aided Geom. Des. 24, No. 1, 1--9 (2007; Zbl 1171.65325) Full Text: DOI Link OpenURL
Siddiqi, Shahid S.; Ahmad, Nadeem A new three-point approximating \(C^{2}\) subdivision scheme. (English) Zbl 1116.65019 Appl. Math. Lett. 20, No. 6, 707-711 (2007). MSC: 65D17 PDF BibTeX XML Cite \textit{S. S. Siddiqi} and \textit{N. Ahmad}, Appl. Math. Lett. 20, No. 6, 707--711 (2007; Zbl 1116.65019) Full Text: DOI OpenURL
Choi, Sung Woo; Lee, Byung-Gook; Lee, Yeon Ju; Yoon, Jungho Stationary subdivision schemes reproducing polynomials. (English) Zbl 1097.65032 Comput. Aided Geom. Des. 23, No. 4, 351-360 (2006). MSC: 65D18 PDF BibTeX XML Cite \textit{S. W. Choi} et al., Comput. Aided Geom. Des. 23, No. 4, 351--360 (2006; Zbl 1097.65032) Full Text: DOI OpenURL