×

On conditions under which some generalized Sugeno integrals coincide: a solution to Dubois’ problem. (English) Zbl 1382.28014

Summary: In the paper, we characterize the class of all pairs of fuzzy implications and dual fuzzy implications such that the q-integral and q-cointegral coincide. This gives a solution to the problem posed by Didier Dubois during the conference FSTA 2016, the 13th International Conference on Fuzzy Set Theory and Applications. As a corollary, we obtain necessary and sufficient conditions under which the seminormed fuzzy integral and the semiconormed fuzzy integral are equal for all measurable functions.

MSC:

28E10 Fuzzy measure theory
26E50 Fuzzy real analysis
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agahi, H., λ-generalized sugeno integral and its application, Inf. Sci., 305, 384-394, (2015) · Zbl 1360.28013
[2] Baczyński, M.; Jayaram, B., An introduction to fuzzy implications, (2008), Springer Berlin, Heidelberg
[3] Bassan, B.; Spizzichino, F., Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes, J. Multivar. Anal., 93, 313-339, (2005) · Zbl 1070.60015
[4] Boczek, M.; Kaluszka, M., On the Minkowski-Hölder type inequalities for generalized sugeno integrals with an application, Kybernetika, 52, 329-347, (2016) · Zbl 1389.26063
[5] Drewniak, J.; Król, A., A survey of weak connectives and the preservation of their properties by aggregations, Fuzzy Sets Syst., 161, 202-215, (2010) · Zbl 1188.03015
[6] Dubois, D.; Prade, H., Weighted minimum and maximum operations, Inf. Sci., 39, 205-210, (1986) · Zbl 0605.03021
[7] Dubois, D.; Prade, H.; Rico, A., Residuated variants of sugeno integrals: towards new weighting schemes for qualitative aggregation methods, Inf. Sci., 329, 765-781, (2016) · Zbl 1390.68648
[8] Dubois, D.; Prade, H.; Rico, A.; Teheux, B., Generalized sugeno integrals, (International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, (2016), Springer International Publishing)
[9] Dubois, D.; Prade, H.; Rico, A.; Teheux, B., Generalized qualitative sugeno integrals, Inf. Sci.
[10] Durante, F.; Sempi, C., Semicopulæ, Kybernetika, 41, 315-328, (2005) · Zbl 1249.26021
[11] Durante, F.; Sempi, C., Principles of copula theory, (2016), CRC Press · Zbl 1380.62008
[12] Grabisch, M.; Marichal, J.-L.; Mesiar, R.; Pap, E., Aggregation functions, (2009), Cambridge University Press New York
[13] Greco, G. H., Fuzzy integrals and fuzzy measures integrals with their values in complete lattices, J. Math. Anal. Appl., 124, 594-603, (1987) · Zbl 0625.28015
[14] Kandel, A.; Byatt, W. J., Fuzzy sets, fuzzy algebra, and fuzzy statistics, Proc. IEEE, 66, 1619-1639, (1978)
[15] Klement, E. P.; Mesiar, R.; Pap, E., Triangular norms, (2000), Kluwer Academic Publishers Dordrecht · Zbl 0972.03002
[16] Kolesárová, A.; Mesiar, R., On linear and quadratic constructions of aggregation functions, Fuzzy Sets Syst., 268, 1-14, (2015) · Zbl 1360.68839
[17] Marichal, J.-L., On sugeno integral as an aggregation function, Fuzzy Sets Syst., 114, 347-365, (2000) · Zbl 0971.28010
[18] Murofushi, T., A note on upper and lower sugeno integrals, Fuzzy Sets Syst., 138, 551-558, (2003) · Zbl 1094.28012
[19] Suárez García, F.; Gil Álvarez, P., Two families of fuzzy integrals, Fuzzy Sets Syst., 18, 67-81, (1986) · Zbl 0595.28011
[20] Sugeno, M., Theory of fuzzy integrals and its applications, (1974), Tokyo Institute of Technology Tokyo, PhD thesis
[21] Wang, Z.; Klir, G., Generalized measure theory, (2009), Springer New York
[22] Yager, R., Modeling holistic fuzzy implication using co-copulas, Fuzzy Optim. Decis. Mak., 5, 207-226, (2006) · Zbl 1127.03324
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.