×

On topological equivalence of linear lows with applications to bilinear control systems. (English) Zbl 1129.37008

Summary: This paper classifies continuous linear flows using concepts and techniques from topological dynamics. Specifically, the concepts of equivalence and conjugacy are adapted to flows on vector bundles, and the Lyapunov decomposition is characterized using the induced flows on the Grassmann and the flag bundles. These results are then applied to bilinear control systems, for which their behavior in \(\mathbb{R}^{d}\), on the projective space \(\mathbb{P}^{d-1}\), and on the Grassmannians is characterized.

MSC:

37B55 Topological dynamics of nonautonomous systems
37N35 Dynamical systems in control
93B10 Canonical structure
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] V. Ayala, F. Colonius, and W. Kliemann, Dynamical characterization of the Lyapunov form of matrices. Linear Algebra Appl. 420 (2005), 272–290. · Zbl 1076.15013 · doi:10.1016/j.laa.2005.01.019
[2] C. J. Braga Barros and L. A. B. San Martin, Chain transitive sets for flows on flag bundles. Forum Math. (to appear). · Zbl 1131.37011
[3] I. U. Bronstein and A. Y. Kopanskii, Smooth invariant manifolds and normal forms. World Scientific (1994). · Zbl 0974.34001
[4] F. Colonius and W. Kliemann, Morse decompositions and spectra on flag bundles. J. Dynam. Differential Equations 14 (2002), 719–741. · Zbl 1037.37009 · doi:10.1023/A:1020756125179
[5] _____, The dynamics of control. Birkhäuser (2000). · Zbl 0962.92007
[6] C. Conley, Isolated invariant sets and the Morse index. CBMS Regional Conf. Ser. Math. 38 (1978). · Zbl 0397.34056
[7] M. W. Hirsch, S. Smale, and R. L. Devaney, Differential equations, dynamical systems and an introduction to chaos. Elsevier (2004). · Zbl 1135.37002
[8] W. Kang and A. J. Krener, Extended quadratic controller normal form and dynamic feedback linearization of nonlinear systems. SIAM J. Control Optim. 30 (1992), 1319–1337. · Zbl 0771.93034 · doi:10.1137/0330070
[9] M. Karoubi, K-Theory. An introduction. Springer-Verlag (1978).
[10] Nguyen Dinh Cong, Topological dynamics of random dynamical systems. Oxford Math. Monogr., Clarendon Press (1997). · Zbl 0889.58051
[11] M. Patrao and L. A. B. San Martin, Morse decomposition of semiflows on fiber bundles. Discrete Contin. Dynam. Systems A17 (2007), 113–139.
[12] W. Respondek and I. Tall, Feedback equivalence of nonlinear control systems: a survey on formal approach. To appear in: Chaos in Automatic Control (W. Perruquetti and J.-P. Barbot, eds.) Taylor and Francis (2005).
[13] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos. CRC Press (1999). · Zbl 0914.58021
[14] D. Salamon and E. Zehnder, Flows on vector bundles and hyperbolic sets. Trans. Amer. Math. Soc. 306 (1988), 623–649. · Zbl 0661.58025 · doi:10.1090/S0002-9947-1988-0933310-9
[15] J. Selgrade, Isolated invariant sets for flows on vector bundles. Trans. Amer. Math. Soc. 203 (1975), 259–290. · Zbl 0265.58004 · doi:10.1090/S0002-9947-1975-0368080-X
[16] F. Warner, Foundations of differentiable manifolds and Lie groups. Springer-Verlag (1983). · Zbl 0516.58001
[17] S. Wiggins, Introduction to applied nonlinear dynamical systems and applications. Springer-Verlag (1996). · Zbl 0870.70019
[18] F. Wirth, A converse Lyapunov theorem for linear parameter-varying and linear switching systems. SIAM J. Control Optim. 44 (2005), 210–239. · Zbl 1098.34040 · doi:10.1137/S0363012903434790
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.