zbMATH — the first resource for mathematics

The double origin of the symplectic group. (La double origine du groupe symplectique.) (French) Zbl 1156.01313
Summary: The goal of this paper is the description of the mathematical contexts which allowed the emergence of one of the so called classical groups, namely the symplectic group, by which the word ‘symplectic’ appeared in mathematics. We show that it has a double origin, one in the line complexes of the projective geometry and the other one, in some questions about transformations of abelian integrals.
01A55 History of mathematics in the 19th century
01A60 History of mathematics in the 20th century
Full Text: DOI
[1] M. Audin, Géométrie, Belin, 1998.
[2] ()
[3] Bertrand, Cours d’analyse de l’ecole polytechnique, (1892)
[4] Dickson, L.E., A triply infinite system of simple groups, Quar. jour. of math, 169-178, (1897) · JFM 28.0136.01
[5] Dickson, L.E., Simplicity of the abelian group on two pairs of indices in the Galois field of order 2^n, n > 1, Quar. jour. of math, 383-384, (1899) · JFM 29.0118.02
[6] Dickson, L.E., Theory of linear groups in an arbitrary field, transactions of the American mathematical society, (), 363-394, t. 2 · JFM 32.0131.03
[7] Dickson, L.E., Linear groups, dover publ, (1958)
[8] Dieudonné, J.; Guérindon, J., L’algèbre et la géométrie jusqu’en 1840, ()
[9] Dieudonné, J., Cours de géométrie algébrique, (1974), PUF
[10] Dieudonné, J., Sur LES groupes classiques, (1948), Hermann · Zbl 0037.01304
[11] Grand Larousse Universel, 1997.
[12] Griffiths, P.; Harris, J., Principles of algebraic geometry, (1994), Wiley Classics Library · Zbl 0836.14001
[13] Hellegouarch, Y., Invitation aux mathématiques de Fermat-wiles, (1997), Masson · Zbl 0887.11003
[14] Hermite, C., Oeuvres complètes, (1905), Gauthier-Villars
[15] Hermite, C., Sur la théorie de la transformation des fonctions abéliennes, comptes rendus de l’académie des sciences, (1855), t. XL
[16] Hermite, C., Cours de M. Hermite rédigé par M. andoyer, (1891), Hermann
[17] Houzel, C., Fonctions elliptiques et intégrales abéliennes, () · Zbl 0386.14010
[18] Iglesias, P., LES origines du calcul symplectique chez Lagrange, L’enseignement mathématique, (), 257-277, t. 44 · Zbl 0966.01017
[19] Jordan, C., Traité des substitutions et des équations algébriques, (1957), Gauthier-Villars · Zbl 0078.01204
[20] Hawkins, T., Line geometry, differential equations and the birth of Lie’s theory of groups, (), 275-327
[21] Hawkins, T., An essay in the history of mathematics, 1869-1926, (2000), Springer
[22] Jessop, C.M., A treatise on the line complex, (1903), Cambridge University Press · JFM 34.0702.06
[23] Dauzat, A., Dictionnaire étymologique et historique du français, (1993), Larousse
[24] Lie, S.; Lie, S., Über komplexe, inbesondere linien- und kugelkomplexe, mit anwendung auf die theorie der partieller diffetialgleichungen, Mathematische annalen, Mathematische annalen, 5, 209-256, (1872) · JFM 04.0408.01
[25] Lie, S., Theorie der trasformationsgruppen I,II,III, (1893), Leipzig
[26] Möbius, A.F., Über eine besondere art dualer verhältnisse zwischen figuren im raume, Journal de crelle, 317-341, (1833), t. 10
[27] D’Ocagne, M., Cours de Géométrie pure et appliquée de l’école polytechnique, (1917), Gauthier-Villars · JFM 50.0368.04
[28] Perrin, D., Géométrie algébrique, une introduction, (1995), InterEditions · Zbl 0842.14001
[29] Plücker, J., Neue geometrie des raumes, (1868), Leipzig
[30] Rowe, D.E., The early geometrical works of sophus Lie and felix Klein, (), 275-327
[31] Sidler, J-C., Géométrie projective, (1993), InterEditions
[32] ()
[33] Weyl, H., The classical groups, their invariants and representations, (1946), Princeton University Press · Zbl 1024.20502
[34] Ziegler, R., Die geschichte der geometrischen mechanik, (1985), Frans Steiner Verlag
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.