×

A topological characterization of the \(\omega\)-limit sets of analytic vector fields on open subsets of the sphere. (English) Zbl 1409.37052

Summary: In [Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 9, No. 2, 515–521 (2006; Zbl 1178.37015)], the second author and G. Soler López characterized, up to homeomorphism, the \(\omega\)-limit sets of analytic vector fields on the sphere and the projective plane. The authors also studied the same problem for open subsets of these surfaces.
Unfortunately, an essential lemma in their programme for general surfaces has a gap. Although the proof of this lemma can be amended in the case of the sphere, the plane, the projective plane and the projective plane minus one point (and therefore the characterizations for these surfaces in [the second author and G. Soler López, Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 9, No. 2, 515–521 (2006; Zbl 1178.37015)] are correct), the lemma is not generally true, see [the authors, Qual. Theory Dyn. Syst. 16, No. 2, 293–298 (2017; Zbl 1385.37056)].
Consequently, the topological characterization for analytic vector fields on open subsets of the sphere and the projective plane is still pending. In this paper, we close this problem in the case of open subsets of the sphere.

MSC:

37E35 Flows on surfaces
37C15 Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems
37C10 Dynamics induced by flows and semiflows
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] V. W. Adkisson, Plane Peanian continua with unique maps on the sphere and in the plane, Trans. Amer. Math. Soc., 44, 58-67 (1938) · JFM 64.0625.01 · doi:10.1090/S0002-9947-1938-1501962-9
[2] V. W. Adkisson; S. Mac Lane, Extending maps of plane Peano continua, Duke Math. J., 6, 216-228 (1940) · Zbl 0026.36302 · doi:10.1215/S0012-7094-40-00616-0
[3] S. Kh. Aranson, G. R. Belitsky and E. V. Zhuzhoma, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Translations of Mathematical Monographs, 153, American Mathematical Society, Providence, 1996. · Zbl 0853.58090
[4] N. P. Bhatia and G. P. Szegő, Stability Theory of Dynamical Systems, Reprint of the 1970 original, Springer-Verlag, Berlin, 2002. · Zbl 0993.37001
[5] J. G. Espín Buendía; V. Jiménez López, Analytic plane sets are locally \(2n\)-stars: A dynamically based proof, Appl. Math. Inf. Sci., 9, 2355-2360 (2015)
[6] J. G. Espín Buendía; V. Jiménez López, Some remarks on the \(\omega \)-limit sets for plane, sphere and projective plane analytic flows, Qual. Theory Dyn. Syst., 16, 293-298 (2017) · Zbl 1385.37056 · doi:10.1007/s12346-016-0192-1
[7] H. M. Gehman, On extending a continuous \((1\text{-}1)\) correspondence of two plane continuous curves to a correspondence of their planes, Trans. Amer. Math. Soc., 28, 252-265 (1926) · JFM 52.0604.02 · doi:10.2307/1989114
[8] H. M. Gehman, On extending a continuous (1-1) correspondence. Ⅱ, Trans. Amer. Math. Soc., 31, 241-252 (1929) · JFM 55.0318.01 · doi:10.2307/1989382
[9] H. Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2), 68, 460-472 (1958) · Zbl 0108.07804 · doi:10.2307/1970257
[10] M. J. Greenberg, Lectures on Algebraic Topology, W. A. Benjamin, New York-Amsterdam, 1967. · Zbl 0169.54403
[11] C. Gutiérrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dynam. Systems, 6, 17-44 (1986) · Zbl 0606.58042 · doi:10.1017/S0143385700003278
[12] F. Harary, Graph Theory, Addison-Wesley, Reading-Menlo Park-London, 1969. · Zbl 0182.57702
[13] W. Huebsch; M. Morse, Diffeomorphisms of manifolds, Rend. Circ. Mat. Palermo (2), 11, 291-318 (1962) · Zbl 0117.16901 · doi:10.1007/BF02843877
[14] V. Jiménez López; J. Llibre, A topological characterization of the \(\omega \)-limit sets for analytic flows on the plane, the sphere and the projective plane, Adv. Math., 216, 677-710 (2007) · Zbl 1134.37016 · doi:10.1016/j.aim.2007.06.007
[15] V. Jiménez López; G. Soler López, A characterization of \(\omega \)-limit sets for continuous flows on surfaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 9, 515-521 (2006) · Zbl 1178.37015
[16] U. Karimov. D. Repovš; W. Rosicki; A. Zastrow, On two-dimensional planar compacta not homotopically equivalent to any one-dimensional compactum, Topology Appl., 153, 284-293 (2005) · Zbl 1086.54020 · doi:10.1016/j.topol.2004.02.020
[17] J. R. Kline, Concerning sense on closed curves in non-metrical plane analysis situs, Ann. of Math. (2), 21, 113-119 (1919) · JFM 47.0520.02 · doi:10.2307/2007227
[18] E. A. Knobelauch, Extensions of homeomorphisms, Duke Math. J., 16, 247-259 (1949) · Zbl 0037.09903 · doi:10.1215/S0012-7094-49-01624-5
[19] S. Mac Lane and V. W. Adkisson, Extensions of homeomorphisms on the sphere, in Lectures in Topology (ed. C. Chevalley), University of Michigan Press, (1941), 223-236 · Zbl 0063.03694
[20] S. Mac Lane; V. W. Adkisson, Fixed points and the extension of the homeomorphisms of a Planar Graph, Amer. J. Math., 60, 611-639 (1938) · JFM 64.0596.03 · doi:10.2307/2371602
[21] C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975. · Zbl 0298.30014
[22] W. Rudin, Real and Complex Analysis, Third edition, McGraw-Hill, New York, 1987. · Zbl 0925.00005
[23] R. A. Smith; E. S. Thomas, Transitive flows on two-dimensional manifolds, J. London Math. Soc. (2), 37, 569-576 (1988) · Zbl 0634.58026 · doi:10.1112/jlms/s2-37.3.569
[24] K. Spindler, Abstract Algebra with Applications. Volume Ⅱ. Rings and Fields, Marcel Dekker, New York, 1994. · Zbl 0796.00001
[25] D. Sullivan, Combinatorial invariants of analytic spaces, in Proceedings of Liverpool Singularities-Symposium, Ⅰ (1969/70) (ed. C. T. C. Wall), Springer, (1971), 165-168. · Zbl 0227.32005
[26] R. Vinograd, On the limit behavior of an unbounded integral curve (Russian), Moskov. Gos. Univ. Uč. Zap. 155, Mat., 5, 94-136 (1952)
[27] J. H. C. Whitehead, Manifolds with transverse fields in euclidean space, Ann. of Math., 73, 154-212 (1961) · Zbl 0096.37802 · doi:10.2307/1970286
[28] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36, 63-89 (1934) · JFM 60.0217.01 · doi:10.1090/S0002-9947-1934-1501735-3
[29] H. Whitney; F. Bruhat, Quelques propriétés fondamentales des ensembles analytiques-réels, (French) [Some fundamental properties of real analytic sets], Comment. Math. Helv., 33, 132-160 (1959) · Zbl 0100.08101 · doi:10.1007/BF02565913
[30] S. Willard, General Topology, Dover Publications, Mineola, 1970. · Zbl 0205.26601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.