Libgober, Anatoly Complements to ample divisors and singularities. (English) Zbl 1485.14003 Cisneros-Molina, José Luis (ed.) et al., Handbook of geometry and topology of singularities II. Cham: Springer. 501-567 (2021). Reviewer: Giancarlo Urzúa (Santiago de Chile) MSC: 14B05 32S22 14E20 57M12 14-02 PDF BibTeX XML Cite \textit{A. Libgober}, in: Handbook of geometry and topology of singularities II. Cham: Springer. 501--567 (2021; Zbl 1485.14003) Full Text: DOI arXiv
Parusiński, Adam Algebro-geometric equisingularity of Zariski. (English) Zbl 1486.32011 Cisneros-Molina, José Luis (ed.) et al., Handbook of geometry and topology of singularities II. Cham: Springer. 177-222 (2021). MSC: 32S15 14B05 14H20 32-02 14-02 PDF BibTeX XML Cite \textit{A. Parusiński}, in: Handbook of geometry and topology of singularities II. Cham: Springer. 177--222 (2021; Zbl 1486.32011) Full Text: DOI arXiv
Hamm, Helmut A.; Lê, Dũng Tráng The Lefschetz theorem for hyperplane sections. (English) Zbl 1475.14001 Cisneros-Molina, José Luis (ed.) et al., Handbook of geometry and topology of singularities I. Cham: Springer. 491-540 (2020). MSC: 14-02 32-02 14D05 14F45 14F35 32C15 14Bxx 32Sxx PDF BibTeX XML Cite \textit{H. A. Hamm} and \textit{D. T. Lê}, in: Handbook of geometry and topology of singularities I. Cham: Springer. 491--540 (2020; Zbl 1475.14001) Full Text: DOI
Pham, Frédéric; Teissier, Bernard Lipschitz fractions of a complex analytic algebra and Zariski saturation. (English) Zbl 1457.32072 Neumann, Walter (ed.) et al., Introduction to Lipschitz geometry of singularities. Lecture notes of the international school on singularity theory and Lipschitz geometry, Cuernavaca, Mexico, June 11–22, 2018. Cham: Springer. Lect. Notes Math. 2280, 309-337 (2020). MSC: 32S05 PDF BibTeX XML Cite \textit{F. Pham} and \textit{B. Teissier}, Lect. Notes Math. 2280, 309--337 (2020; Zbl 1457.32072) Full Text: DOI arXiv
Hauenstein, Jonathan D.; Regan, Margaret H. Real monodromy action. (English) Zbl 1433.65094 Appl. Math. Comput. 373, Article ID 124983, 13 p. (2020). MSC: 65H10 65H20 14D05 14Q30 68W30 14Q65 PDF BibTeX XML Cite \textit{J. D. Hauenstein} and \textit{M. H. Regan}, Appl. Math. Comput. 373, Article ID 124983, 13 p. (2020; Zbl 1433.65094) Full Text: DOI arXiv
Cassou-Noguès, Pi.; Eyral, C.; Oka, M. Topology of septics with the set of singularities \(\mathbf B_{4,4} \oplus 2\mathbf A_3 \oplus 5\mathbf A_1\) and \(\pi_1\)-equivalent weak Zariski pairs. (English) Zbl 1248.14035 Topology Appl. 159, No. 10-11, 2592-2608 (2012). Reviewer: Caterina Cumino (Torino) MSC: 14H30 14H20 14H45 14H50 PDF BibTeX XML Cite \textit{Pi. Cassou-Noguès} et al., Topology Appl. 159, No. 10--11, 2592--2608 (2012; Zbl 1248.14035) Full Text: DOI
Kaliman, Shulim Uniform Zariski’s theorem of fundamental groups. (English) Zbl 0961.14011 Isr. J. Math. 116, 323-343 (2000). Reviewer: Mina Teicher (Ramat Gan) MSC: 14F35 14E25 PDF BibTeX XML Cite \textit{S. Kaliman}, Isr. J. Math. 116, 323--343 (2000; Zbl 0961.14011) Full Text: DOI arXiv
Lê Dũng Tráng; Saito, Kyoji The local \(\pi _ 1\) of the complement of a hypersurface with normal crossings in codimension 1 is abelian. (English) Zbl 0553.14006 Ark. Mat. 22, 1-24 (1984). Reviewer: H.Esnault MSC: 14F35 14M07 14E20 PDF BibTeX XML Cite \textit{Lê Dũng Tráng} and \textit{K. Saito}, Ark. Mat. 22, 1--24 (1984; Zbl 0553.14006) Full Text: DOI
Cheniot, Denis Un théorème du type de Lefschetz. (French) Zbl 0332.14007 Ann. Inst. Fourier 25, No. 1, 195-213 (1975). MSC: 14F35 PDF BibTeX XML Cite \textit{D. Cheniot}, Ann. Inst. Fourier 25, No. 1, 195--213 (1975; Zbl 0332.14007) Full Text: DOI Numdam EuDML
Popp, H. Ein Satz vom Lefschetzschen Typ über die Fundamentalgruppe quasi- projektiver Schemata. (German) Zbl 0199.55801 Math. Z. 116, 143-152 (1970). PDF BibTeX XML Cite \textit{H. Popp}, Math. Z. 116, 143--152 (1970; Zbl 0199.55801) Full Text: DOI EuDML