×

Hamilton-Jacobi hydrodynamics of pulsating relativistic stars. (English) Zbl 1478.83045

Summary: The dynamics of self-gravitating fluid bodies is described by the Euler-Einstein system of partial differential equations. The break-down of well-posedness on the fluid-vacuum interface remains a challenging open problem, which is manifested in simulations of oscillating or inspiraling binary neutron-stars. We formulate and implement a well-posed canonical hydrodynamic scheme, suitable for neutron-star simulations in numerical general relativity. The scheme uses a variational principle by Carter-Lichnerowicz stating that barotropic fluid motions are conformally geodesic and Helmholtz’s third theorem stating that initially irrotational flows remain irrotational. We apply this scheme in 3 + 1 numerical general relativity to evolve the canonical momentum of a fluid element via the Hamilton-Jacobi equation. We explore a regularization scheme for the Euler equations, that uses a fiducial atmosphere in hydrostatic equilibrium and allows the pressure to vanish, while preserving strong hyperbolicity on the vacuum boundary. The new regularization scheme resolves a larger number of radial oscillation modes compared to standard, non-equilibrium atmosphere treatments.

MSC:

83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
70H20 Hamilton-Jacobi equations in mechanics
85A15 Galactic and stellar structure
65F22 Ill-posedness and regularization problems in numerical linear algebra
49S05 Variational principles of physics
49J20 Existence theories for optimal control problems involving partial differential equations

Software:

HE-E1GODF; SciPy; NumPy
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Read J S, Markakis C, Shibata M, Uryū K, Creighton J D E and Friedman J L 2009 Phys. Rev. D 79 124033 · doi:10.1103/physrevd.79.124033
[2] Markakis C, Read J S, Shibata M, Uryū K, Creighton J D E, Friedman J L and Lackey B D 2009 J. Phys.: Conf. Ser.189 012024 · doi:10.1088/1742-6596/189/1/012024
[3] Read J S et al 2013 Phys. Rev. D 88 044042 · doi:10.1103/physrevd.88.044042
[4] Font J A 2008 Living Rev. Relativ.11 7 · Zbl 1166.83003 · doi:10.12942/lrr-2008-7
[5] Rezzolla L and Zanotti O 2013 Relativistic Hydrodynamics (Oxford: Oxford University Press) · Zbl 1297.76002 · doi:10.1093/acprof:oso/9780198528906.001.0001
[6] Christodoulou D and Lindblad H 2000 Commun. Pure Appl. Math.53 1536-602 · Zbl 1031.35116 · doi:10.1002/1097-0312(200012)53:12<1536::aid-cpa2>3.0.co;2-q
[7] Lindblad H 2005 Commun. Math. Phys.260 319-92 · Zbl 1094.35088 · doi:10.1007/s00220-005-1406-6
[8] Jang J and Masmoudi N 2009 Commun. Pure Appl. Math.62 1327-85 · Zbl 1213.35298 · doi:10.1002/cpa.20285
[9] Hadžić M, Shkoller S and Speck J 2019 Commun. PDE44 859-906 · Zbl 1420.35211 · doi:10.1080/03605302.2019.1583250
[10] Radice D, Rezzolla L and Galeazzi F 2014 Class. Quantum Grav.31 075012 · Zbl 1291.83092 · doi:10.1088/0264-9381/31/7/075012
[11] Hilditch D 2013 Int. J. Mod. Phys. A 28 1340015 · Zbl 1277.35230 · doi:10.1142/s0217751x13400150
[12] Jang J and Masmoudi N 2015 Commun. Pure Appl. Math.68 61-111 · Zbl 1317.35185 · doi:10.1002/cpa.21517
[13] Oliynyk T A 2012 Phys. Rev. D 85 044019 · doi:10.1103/physrevd.85.044019
[14] Oliynyk T A 2017 Bull. Sci. Math.141 105-222 · Zbl 1366.35136 · doi:10.1016/j.bulsci.2017.02.001
[15] Schoepe A, Hilditch D and Bugner M 2018 Phys. Rev. D 97 123009 · doi:10.1103/physrevd.97.123009
[16] Oliynyk T A 2019 arXiv:1907.08192 [gr-qc]
[17] Duez M D, Marronetti P, Shapiro S L and Baumgarte T W 2003 Phys. Rev. D 67 024004 · doi:10.1103/physrevd.67.024004
[18] Dietrich T, Ujevic M, Tichy W, Bernuzzi S and Brügmann B 2017 Phys. Rev. D 95 024029 · doi:10.1103/physrevd.95.024029
[19] The LIGO Scientific Collaboration and the Virgo Collaboration 2017 Astrophys. J. Lett.850 L39 · doi:10.3847/2041-8213/aa9478
[20] Stergioulas N, Bauswein A, Zagkouris K and Janka H T 2011 Mon. Not. R. Astron. Soc.418 427-36 · doi:10.1111/j.1365-2966.2011.19493.x
[21] Arnold V 1966 Ann. Inst. Fourier1 319 · Zbl 0148.45301 · doi:10.5802/aif.233
[22] Synge J L 1938 Proc. Lond. Math. Soc.s2-43 376-400 · JFM 63.0764.03 · doi:10.1112/plms/s2-43.5.376
[23] Lichnerowicz A 1967 Relativistic Hydrodynamics and Magnetohydrodynamics (New York, NY: W. A. Benjamin) · Zbl 0193.55401
[24] Carter B 1979 Perfect fluid and magnetic field conservation laws in the theory of black hole accretion rings Active Galactic Nuclei ed C Hazard and S Mitton (Cambridge: Cambridge University Press) p 273
[25] Markakis C, Uryū K, Gourgoulhon E, Nicolas J P, Andersson N, Pouri A and Witzany V 2017 Phys. Rev. D 96 064019 · doi:10.1103/physrevd.96.064019
[26] Bekenstein J and Oron A 2000 Phys. Rev. E 62 5594-602 · doi:10.1103/physreve.62.5594
[27] Bekenstein J and Oron A 2001 Found. Phys.31 895-907 · doi:10.1023/a:1017507917267
[28] Gourgoulhon E 2006 EAS Publ. Ser.21 43-79 · doi:10.1051/eas:2006106
[29] Price R H, Markakis C and Friedman J L 2009 J. Math. Phys.50 16 · Zbl 1256.85002 · doi:10.1063/1.3166136
[30] Teukolsky S A 1998 Astrophys. J.504 442-9 · doi:10.1086/306082
[31] Gourgoulhon E 1998 arXiv:hep-th/9804054
[32] Markakis C M 2014 arXiv:1410.7777
[33] Friedman J L and Stergioulas N 2013 Rotating Relativistic Stars (New York, NY: Cambridge University Press) · Zbl 1306.85001 · doi:10.1017/CBO9780511977596
[34] Westernacher-Schneider J R 2020 arXiv:2004.15000
[35] Duez M D, Liu Y T, Shapiro S L and Stephens B C 2005 Phys. Rev. D 72 024028 · doi:10.1103/physrevd.72.024028
[36] Gomes D A 2002 Calculus Var. PDE14 345-57 · Zbl 1005.49027 · doi:10.1007/s005260100106
[37] Bressan A 2003 Viscosity solutions of Hamilton-Jacobi equations and optimal control problems
[38] Jin S and Osher S J 2003 Commun. Math. Sci1 575-91 · Zbl 1090.35116 · doi:10.4310/cms.2003.v1.n3.a9
[39] Moldenhauer N, Markakis C M, Johnson-McDaniel N K, Tichy W and Brügmann B 2014 Phys. Rev. D 90 084043 · doi:10.1103/physrevd.90.084043
[40] Dietrich T, Moldenhauer N, Johnson-McDaniel N K, Bernuzzi S, Markakis C M, Bruegmann B and Tichy W 2015 Phys. Rev. D 92 124007 · doi:10.1103/PhysRevD.92.124007
[41] Chen G Q G and Feldman M 2018 The Mathematics of Shock Reflection-Diffraction and von Neumann’s Conjectures (Princeton, NJ: Princeton University Press) · Zbl 1403.35001
[42] Blandford R and Thorne K T 2017 Modern Classical Physics (Princeton, NJ: Princeton University Press) · Zbl 1398.82004
[43] LeFloch P G, Makhlof H and Okutmustur B 2012 SIAM J. Numer. Anal.50 2136-58 · Zbl 1258.35143 · doi:10.1137/110857775
[44] Papadopoulos P and Font J A 1999 arXiv:gr-qc/9912054
[45] Oliphant T E 2006 A Guide to NumPy (USA: Trelgol Publishing) vol 1
[46] Gottlieb S and Shu C W 1998 Math. Comput. Am. Math. Soc.67 73-85 · Zbl 0897.65058 · doi:10.1090/s0025-5718-98-00913-2
[47] Virtanen P et al 2020 SciPy 1.0: fundamental algorithms for scientific computing in Python Nat. Methods17 261-72 · doi:10.1038/s41592-019-0686-2
[48] Toro E F 2009 Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction 3rd edn (Berlin: Springer) · Zbl 1227.76006 · doi:10.1007/b79761
[49] Munz C D 1994 Math. Methods Appl. Sci.17 597-612 · Zbl 0803.76074 · doi:10.1002/mma.1670170803
[50] O’Boyle M, Markakis C and Stergioulas N 2020 A parametrized equation of state for neutron star matter with continuous sound speed (in preparation)
[51] Haensel P and Potekhin A Y 2004 Astron. Astrophys.428 191-7 · Zbl 1065.85005 · doi:10.1051/0004-6361:20041722
[52] Font J A, Dimmelmeier H, Gupta A and Stergioulas N 2001 Mon. Not. R. Astron. Soc.325 1463-70 · doi:10.1046/j.1365-8711.2001.04555.x
[53] Kastaun W 2006 Phys. Rev. D 74 124024 · doi:10.1103/physrevd.74.124024
[54] LeVeque R J 1998 J. Comput. Phys.146 346-65 · Zbl 0931.76059 · doi:10.1006/jcph.1998.6058
[55] Käppeli R and Mishra S 2014 J. Comput. Phys.259 199-219 · Zbl 1349.76345 · doi:10.1016/j.jcp.2013.11.028
[56] Tsakiris N 2007 A vacuum tracking method for oscillating stars MSc Thesis Aristotle University of Thessaloniki
[57] Schmidt P and Hinderer T 2019 Phys. Rev. D 100 021501 · doi:10.1103/physrevd.100.021501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.