×

Walshfunktionen und endlichdimensionale Hilberträume. (German) Zbl 0168.11004

PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] G. N. Agaev: [1] A Wiener type theorem for series of Walshfunctions. (Russisch) Dokl. Akad. Nauk. USSR142 (1962), 751-753.
[2] G. Alexits: [1] Sur la sommabilité des series orthogonales lacunaires. Acta Math. Acad. Sci. Hungaricae4 (1953), 181-188. · Zbl 0052.06004 · doi:10.1007/BF02127579
[3] G. Alexits: [2] Konvergenzprobleme der Orthogonalreihen. Akadémiai Kiadó, Budapest (1960). VEB Deutsch. Verlag der Wissenschaften, Berlin (Lehrbuch). · Zbl 0097.27702
[4] G. Andreoli: [1] Su due sistemi di funzioni ortogonali constanti a tratti e collegati a determinati Hadamard. Ricera, Napoli5, no. 1-2, 3-14 (1954). · Zbl 0055.29405
[5] R. P. Jr. Boas andPollard Hardy: [1] The multiplicativ completion of sets of functions. Bull. Amer. Math. Soc.54, 518-522 (1948). · Zbl 0032.15301 · doi:10.1090/S0002-9904-1948-09029-2
[6] H. E. Chrestenson: [1] A class of generalized Walsh functions (Abstract). Bull. Amer. Math. Soc.59 (1953), 391-392.
[7] H. E. Chrestenson: [2] Some groups of orthonormal functions (Abstract). Bull. Amer. Math. Soc.59 (1953). 392. · Zbl 0052.29401
[8] H. E. Chrestenson: [3] A class of generalized Walsh functions. Pacific J. Math.5, 17-31 (1955).
[9] Ci Guan-ju: [1] On absolut convergence of multiple Walsh- and Fourierseries. (Polish, Russian and English summaries) Prace Mat.5 (1961), 107-117.
[10] Z. Ciesielski, J. Musielak: [1] On absolut convergence of Haarseries. Colloq. Math.7 (1959), 61-65.
[11] P. Civin: [1] Multiplicative closure and Walshfunctions. Pacific J. Math.2, 291-295 (1952). · Zbl 0046.29501
[12] P. Civin: [2] Orthonormal cyclic groups. Pacific J. Math.4, 481-482 (1954). · Zbl 0056.28702
[13] G. M. D?afarli: [1] On multiplicativ orthogonal systems of functions closed under root extraction. Izv. Akad. Nauk. Azerbaidzan SSR Ser. Fiz.-Math. Teh. Nauk (1961)6, 11-23.
[14] N. J. Fine: [1] On the Walsh functions. Trans. Amer. Math. Soc.65, 372-414 (1949). · Zbl 0036.03604 · doi:10.1090/S0002-9947-1949-0032833-2
[15] N. J. Fine: [2] On groups of orthonormal functions I., II. Pacific J. Math.5, 61-65 (1955). · Zbl 0066.31202
[16] N. J. Fine: [3] The generalized Walsh functions. Trans. Amer. Math. Soc.69 (1950), 66-77. · Zbl 0041.03002
[17] N. J. Fine: [4] Fourier-Stieltjes series of Walsh functions. Trans. Amer. Math. Soc.86 (1957), 246-255. · Zbl 0079.09302 · doi:10.1090/S0002-9947-1957-0091371-6
[18] N. J. Fine: [5] Cesaro summability of Walsh-Fourierseries. Proc. Nat. Acad. Sci. USA,41 (1955), 588-591. · Zbl 0065.05303 · doi:10.1073/pnas.41.8.588
[19] A. Haar: [1] Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, t.69 (1910), p. 331-371. · JFM 41.0469.03 · doi:10.1007/BF01456326
[20] I. I. Hirschman: [1] The de composition of Walsh- an Fourier series (Memoires). Amer. Math. Soc., no.15 (1955).
[21] Kacmarz-Steinhaus: [1] Le système orthogonal de M. Rademacher. Studia Mathematica,2 (1930), 231-247. · JFM 56.0950.06
[22] Khintchine: [1] Über diadische Brüche. Mathematische Zeitschrift,18 (1923), 109-116. · JFM 49.0132.01 · doi:10.1007/BF01192399
[23] Khintchine-Kolmogoroff: [1] Über die Konvergenz von Reihen, deren Glieder durch Zufall bestimmt werden. Recueil de la Soc. Math. de Moscou,32 (1925), 668-677. · JFM 52.0212.03
[24] B. M. Levitan: [1] A generalisation of the operation of translation and infinite hypercomplex systems. Mat. Sb. (N. S.)16 (58) (1945), 259-280;17 (59) (1945), 9-44; 163-192 (English, Russian summary). · Zbl 0061.16203
[25] P. Lévy: [1] Sur une généralisation des fonctions orthogonales de M. Rademacher. Comment. Math. Helv.,16 (1944), 146-152. · Zbl 0060.17105
[26] R. Liedl: [1] Über eine spezielle Klasse von stark multiplikativ orthogonalen Funktionensystemen. Monatshefte f. Math.,68, 2. (1964), 130-137. · Zbl 0128.06803 · doi:10.1007/BF01307114
[27] G. W. Morgenthaler: [1] On Walsh-Fourier series. Trans. Amer Math. Soc.,84 (1957), 472-507. · Zbl 0089.27702 · doi:10.1090/S0002-9947-1957-0091370-4
[28] R. E. A. C. Paley: [1] A remarcable series of orthogonal functions, I., II. Proceedings London Math. Soc., (2)34 (1932), 241-279. · Zbl 0005.24806 · doi:10.1112/plms/s2-34.1.241
[29] Paley-Zygmund: [1] On some series of functions. Proc. of the Chambridge Phil. Soc.,26 (1930), 337-357, 458-474,28 (1932), 190-205. · JFM 56.0254.01 · doi:10.1017/S0305004100016078
[30] J. J. Price: [1] Certain classes of orthonormal step functions (Abstract). Bull. Amer. Math. Soc.,62 (1956), 388.
[31] H. Rademacher: [1] Einige Sätze von allgemeinen Orthogonalfunktionen. Math. Annalen,87 (192), 112-138. · JFM 48.0485.05 · doi:10.1007/BF01458040
[32] R. Salem: [1] Sur une propriété des séries de Fourier des fonctions de carré sommable. Comtes Rendus de l’Académie de Sciences de Paris.
[33] R. G. Selfridge: [1] Generalized Walsh transforms. Pacific J. Math.,5 (1955), 451-480.
[34] Sergie Toni: [1] Su un notevole sistema ortogonale di funzioni. Atti Accad. Sci. Ist. Bologna Cl. Sci. fis. Ann. 246{\(\deg\)}. Rend XI Ser.5, Nr. 1, 225-230 (1958).
[35] Shigeki Yano: [1] On Walsh-Fourier Series. Tôhoku Math. J. ser.2, 3 (1951), 223-242. · Zbl 0044.07101 · doi:10.2748/tmj/1178245527
[36] Shigeki Yano: [2] On Approximation by Walsh Functions. Proc. Amer. Math. Soc.,2, No. 6 (1951), 962-967. · Zbl 0044.07102 · doi:10.1090/S0002-9939-1951-0045235-4
[37] Shigeki Yano: [3] Cesàro summability of Walsh-Fourierseries. Tôhoku Math. Journ.,9 (1957), 267-272. · Zbl 0083.05202 · doi:10.2748/tmj/1178244781
[38] A. A. Sneider: [1] On series of Walsh functions with monoton coefficients. Izvestiya Akad. Nauk. USSR, Ser. Math.12, 179-192 (1948) (russisch).
[39] A. A. Sneider: [2] On the uniqueness of expansions in Walsh functions. Math. Sbornik, NS.24 (66), 279-300 (1949).
[40] A. A. Sneider: [3] On the convergence of subsequences of the partial sums of Fourier series of Walsh functions. Doklady Akad. Nauk USSR, (NS)70 (1950), 969-971 (russisch).
[41] Sunouchi, Gen-Ichivô: [1] On the Walsh-Kaczmarz series. Proc. Amer. Math., Soc.,2, 5-11 (1951). · Zbl 0044.07103 · doi:10.1090/S0002-9939-1951-0041259-1
[42] Tsuchikura Tamotsu [1] Absolute summability of Rademacherseries. Tôhoku Math. J., (2)10 (1958).
[43] P. L. Uljanov: [1] Divergent series over Haarsystem and over bases. Dokl. Akad. Nauk. USSR,138 (1961), 556-559 (russisch).
[44] H. D. Ursell: [1] On the convergence almost everywhere of Rademacherseries and of Bochner-Féjér sums of functions almost periodic in the sense of Stepanoff. Proceedings L. M. S. (2)33, 457-466.
[45] N. Ya. Vilenkin: [1] Über die Theorie lakunärer orthogonaler Systeme. Iswestija Akad. Nauk. USSR,13 (1949), 245-252.
[46] N. Ya. Vilenkin: [2] Supplement zu ?Theorie der Orthogonalreihen? von Kaczmarz-Steinhaus. Amer. Math. Soc. Transl., (2)17 (1961), 219-250.
[47] J. L. Walsh: [1] A property of Haar’s System of orthogonal functions. Math. Annalen,90, 38-45 (1923). · JFM 49.0293.02 · doi:10.1007/BF01456239
[48] J. L. Walsh: [2] A closed set of normal orthogonal functions. Amer. Journal of Math.,55 (1923), 5-24. · JFM 49.0293.03 · doi:10.2307/2387224
[49] C. Watari: [1] On generalized Walsh-Fourierseries. Tôhoku Math. J., (2) (1958), 211-241. · Zbl 0085.05803
[50] C. Watari: [2] A generalisation of Haar functions. Tôhoku Math. J., (8) (1956), 286-290. · Zbl 0073.05704
[51] A. Zygmund: [1] On the convergence of lacunary trigonometric series. Fundamenta Mathematicae,16 (1930), 90-107, Corrigenda Fund. Math.,18 (1932), 312. · JFM 56.0252.01
[52] A. Zygmund: [2] Note on trigonometrical and Rademacher’s series. · JFM 62.0281.04
[53] A. Zygmund: [3] Trigonometrical series, Warsaw-Lwow (1935).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.