×

The origins of quasi-concavity: a development between mathematics and economics. (English) Zbl 1102.01021

Summary: The origins of the notion of quasi-concave function are considered, with special interest in some work by John von Neumann, Bruno de Finetti, and W. Fenchel. The development of such pioneering studies subsequently led to a whole field of research, known as “generalized convexity.” The different styles of the three authors and the various motivations for introducing quasi-concavity are compared, without losing sight of economic applications characteristic of the whole field of generalized convexity.

MSC:

01A60 History of mathematics in the 20th century
52A01 Axiomatic and generalized convexity
90C26 Nonconvex programming, global optimization
91A10 Noncooperative games
91B16 Utility theory
Full Text: DOI

References:

[1] Arrow, K., Essays in the Theory of Risk Bearing (1970), North-Holland: North-Holland Amsterdam · Zbl 0215.58602
[2] Ascoli, G., Sulle minime maggioranti concave e l’analisi delle funzioni continue, Ann. Scuola Norm. Sup. Pisa, 251-266 (1935) · JFM 61.0227.01
[3] Avriel, M.; Diewert, W. E.; Schaible, S.; Zang, I., Generalized Concavity (1988), Plenum: Plenum New York · Zbl 0679.90029
[4] Bonnesen, T.; Fenchel, W., Theorie der Konvexen Körper (1934), Springer-Verlag: Springer-Verlag Berlin · Zbl 0008.07708
[5] Borel, E., Nota IV, (Eléments de la Théorie des Probabilités (1924), Hermann: Hermann Paris), 204-221 · JFM 50.0348.03
[6] Daboni, L., Bruno de Finetti—Necrologio, Boll. Unione Mat. Ital. Ser. VII, I-A, 2, 283-308 (1987) · Zbl 0619.01023
[7] Debreu, G., Least concave utility functions, J. Math. Econom., 3, 121-129 (1976) · Zbl 0361.90007
[8] Dell’Aglio, L., Divergences in the history of mathematics: Borel, von Neumann and the genesis of game theory, Riv. Stor. Sci., 1-46 (1995)
[9] Fenchel, W., Convex Cones, Sets and Functions (1953), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0053.12203
[10] de Finetti, B., Il tragico sofisma, Riv. Ital. Sci. Econom., 7, 362-382 (1935)
[11] de Finetti, B., Vilfredo Pareto di fronte ai suoi critici odierni, Nuovi Studi di Diritto, Economia e Politica, 4-6, 225-244 (1935)
[12] de Finetti, B., La crisi dei principi e l’economia matematica, Acta Seminarii, 2, 33-68 (1943)
[13] de Finetti, B., Sulle stratificazioni convesse, Ann. Mat. Pura Appl., 173-183 (1949) · Zbl 0039.05701
[14] de Finetti, B., Sulla preferibilità, Giornale degli Economisti e Annali di Economia, 11, 685-709 (1952)
[15] de Finetti, B., L’utopia come presupposto necessario per ogni impostazione significativa della scienza economica, (de Finetti, B., Requisiti per un Sistema Economico Accettabile in Relazione alle Esigenze della Società (1973), Angeli: Angeli Milan), 13-87
[16] Giorgi, G.; Guerraggio, A., Ha solo cinquant’anni: la programmazione non lineare, Pristem/Storia. Note di Matematica, Storia, Cultura, 1, 1-31 (1998)
[17] Grattan-Guinness, I., On the prehistory of linear and non-linear programming, (Knobloch, E.; Rowe, D. E., The History of Modern Mathematics, vol. III (1989), Academic Press: Academic Press London), 43-89 · Zbl 0807.01012
[18] Hadjisavvas, N.; Schaible, S., Generalized monotone multi-valued maps, (Floudas, C. A.; Pardalos, P. M., Encyclopedia of Optimization. Encyclopedia of Optimization, E-Integer, vol. II (2001), Kluwer Academic: Kluwer Academic Dordrecht/Boston/London), 224-229 · Zbl 1027.90001
[19] Hadjisavvas, N.; Schaible, S., Generalized monotone single valued maps, (Floudas, C. A.; Pardalos, P. M., Encyclopedia of Optimization. Encyclopedia of Optimization, E-Integer, vol. II (2001), Kluwer Academic: Kluwer Academic Dordrecht/Boston/London), 229-234 · Zbl 1027.90001
[20] Hiriart-Urruty, J. B.; Lemaréchal, C., Convex Analysis and Minimization (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0795.49001
[21] Jensen, J. L.W. V., Om konvexe funktioner og uligheder mellem midelvaerdier, Nyt Tidsskr. Math. B, 16, 49-69 (1905) · JFM 36.0447.03
[22] Kannai, Y., Concavifiability and construction of concave utility functions, J. Math. Econom., 4, 1-56 (1977) · Zbl 0361.90008
[23] Kjeldsen, T. H., A contextualized historical analysis of the Kuhn-Tucker theorem in nonlinear programming: The impact of World War II, Historia Math., 27, 331-361 (2000) · Zbl 0973.01030
[24] Kuhn, H. W.; Tucker, A. W., John von Neumann’s work in the theory of games and mathematical economics, Bull. Amer. Math. Soc., 64, 3, 100-122 (1958) · Zbl 0080.00417
[25] Fan, Ky, Fixed points and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. USA, 38, 121-126 (1954) · Zbl 0047.35103
[26] Morgenstern, O., The collaboration between Oskar Morgenstern and John von Neumann on the theory of games, J. Econom. Lit., 14, 3, 805-816 (1976)
[27] von Neumann, J., Zur Theorie der Gesellschaftspiele, Math. Ann., 100, 295-320 (1928) · JFM 54.0543.02
[28] von Neumann, J., Über ein Ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, Ergebnisse eines Mathematisches Kolloquiums, 8, 73-83 (1937) · Zbl 0017.03901
[29] von Neumann, J.; Morgenstern, O., Theory of Games and Economic Behavior (1944), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0063.05930
[30] Nikaidô, H., On von Neumann’s minimax theorem, Pacific J. Math., 4, 65-72 (1954) · Zbl 0055.10004
[31] Pratt, J., Risk aversion in the small and in the large, Econometrica, 32, 122-136 (1964) · Zbl 0132.13906
[32] Schaible, S.; Ziemba, W. T., Generalized Concavity in Optimization and Economics (1981), Academic Press: Academic Press New York · Zbl 0573.90006
[33] Ville, J., Sur la théorie génerale des jeux ou intervient l’habileté des joueurs, (Borel, E., Traité du Calcul des Probabilités e de ses Applications IV, 2 (1938), Gauthier-Villars: Gauthier-Villars Paris), 105-113 · JFM 64.0519.01
[34] Weintraub, E. R., Toward a history of game theory, (History of Political Economy, vol. 24 (1992), Duke Univ. Press: Duke Univ. Press Durham/London) · Zbl 0191.51004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.