×

Variational bounds and integral relations method in problems of stability. (English. Russian original) Zbl 1220.76034

J. Math. Sci., New York 154, No. 4, 549-603 (2008); translation from Sovrem. Mat., Fundam. Napravl. 23, 96-146 (2007).

MSC:

76E30 Nonlinear effects in hydrodynamic stability
35Q35 PDEs in connection with fluid mechanics
74C20 Large-strain, rate-dependent theories of plasticity
74H55 Stability of dynamical problems in solid mechanics
76A05 Non-Newtonian fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. E. Agaeva, ”Nonstationary rectilinear motion of a thixotropic viscoplastic fluid between two parallel infinite plates,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 146–147 (1966).
[2] S. M. Aleinikov, ”Stability of a nonisothermic flow of a layer of a viscous fluid along the inclined plane,” Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza, No.4, 145–148 (1979). · Zbl 0423.76035
[3] N. Kh. Arutyunyan, A. D. Drozdov, and V. B. Kolmanovskii, ”Stability of viscoelastic bodies and elements of constructions,” Itogi Nauki Tekh. Ser. Mekh. Deform. Tverd. Tela. VINITI, Moscow (1987), pp. 3–77. · Zbl 0752.73031
[4] G. Astarita and G. Marucci, Foundations of Hydromechanics of Non-Newtonian Fluids, Mir, Moscow (1978).
[5] I. M. Astrakhan, ”Stability of rotational motion of a viscoplastic fluid between two coaxial cylinders” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 47–53 (1961).
[6] I. M. Asrakhan, ”Nonstationary circular motion of a viscoplastic fluid confined between two cylinders,” Izv. Vuzov. Neft’ Gaza, No. 4, 73–76 (1961).
[7] F. A. Bahshiyan and R. S. Moiseeva, ”On certain nonlinear problems of motion of a viscoplastic medium,” Izv. Akad. Nauk SSSR. Otd. Tekh. Nauk. Mekh. Mashinostr., No. 3, 170–174 (1963).
[8] V. P. Belomytsev and N. N. Gvozdkov, ”On the loss of thermal stability of motion of a viscoplastic material,” Dokl. Akad. Nauk SSSR, 170, No. 2, 305–307 (1966).
[9] R. Betchov and V. Criminale, Problems of Hydrodynamic Stability, Mir, Moscow (1971) [Russian transl.]. · Zbl 0248.76018
[10] M. A. Brutyan and P. L. Krapivskii, ”Hydrodynamics of non-Newtonian fluids,” Itogi Nauki Tekhniki. Ser. Kompleksnye Spetsial’nye Razdely Mekhaniki, VINITI, Moscow (1991), 4, 3–98.
[11] L. M. Buchatskii, ”Peculiarities of hardening of a viscoplastic medium with variable fluidity limit,” Inzh.-Fiz. Zh., 63, No. 5, 605–611 (1992).
[12] V. I. Veshnyakov and A. M. Makarov, ”Nonstationary motion of a viscoplastic medium over an infinite plate,” Kolloidn. Zh., 35, No. 1, 3–8 (1973).
[13] M. P. Volarovich, ”The study of rheological properties of dispesive systems,” Kolloidn. Zh., 16, No. 3, 227–240 (1954).
[14] F. A. Garifullin and K. Z. Galimov, ”On the hydrodynamic stability of non-Newtonian media,” Prikl. Mekh., 10, No. 8, 3–25 (1974). · Zbl 0399.76055
[15] G. T. Gasanov, ”Nonstationary motion of a viscoplastic fluid between two cylinders,” Dokl. Akad. Nauk Azerb. SSR. 18, No. 10, 21–25 (1962).
[16] D. V. Georgievskii, ”On the stability of rotation of a set of viscoplastic layers in centrifuges” in Mathematical Methods in Mechanics [in Russian], Izd. Mosk. Gos. Univ., Moscow (1990), pp. 105–109.
[17] D. V. Georgievskii, ”The general scheme of a ”semilinear” variational method of studying the stability,” in: Questions of Mechanics of Solid Media [in Russian], Izd. Mosk. Gos. Univ., Moscow (1993), pp. 15–21.
[18] D. V. Georgievskii, ”Stability of two-dimensional and three-dimensional viscoplastic flows and the generalized Squire theorem,” Izv. Ross. Akad. Nauk. Mekh. Tv. Tela, No. 2, 117–123 (1993).
[19] D. V. Georgievskii, ”Sufficient integral estimates of a viscoplastic shear,” Izv. Ross. Akad. Nauk. Mekh. Tv. Tela, No. 4, pp. 124–131 (1994).
[20] D. V. Georgievskii, ”Viscoplastic Couette-Taylor flow: distribution of rigid zones and stability,” Izv. Ross. Akad. Nauk, No. 6, 101–106 (1994).
[21] D. V. Geogievskii, ”Stability of a plane-parallel shear flow of two heavy viscous layers” in: Elasticity and Nonelasticity Part II [in Russian], Izd. Mosk. Gos. Univ., Moscow (1994), pp. 108–121.
[22] D. V. Georgievskii, ”Stability of plane perfect rigidly plastic Couette flow,” Prikl. Mat. Mekh., 58, No. 1, 171–175 (1994).
[23] D. V. Georgievskii, ”On shear hereditarily viscoplastic flows,” Vestn. Mosk. Gos. Univ. Ser. Mat. Mekh., No. 1, 45–50 (1996).
[24] D. V. Georgievskii, ”Stability of the nonstationary shear of a viscoplastic half-plane with the tangential discontinuity along the boundary,” Vestn. Mosk. Gos. Univ. Ser. Mat. Mekh., No. 3, 65–72 (1996)
[25] D. V. Georgievskii, ”Estimates of stability of a nonstationary deformation of viscoplastic bodies in plane regions,” Dokl. Ross. Akad. Nauk, 346, No. 4, 471–473 (1996).
[26] D. V. Georgievskii, Stability of Viscoplastic Flows with Arbitrary Hardening, Doctor of Sciences (Phys.-Math.) Thesis, Mosk. Gos. Univ., Moscow (1996).
[27] D. V. Georgievskii, ”Integral estimates of stability of a nonstationary deformation of three-dimensional bodies with complex rheology,” Dokl. Ross. Akad. Nauk, 356, No. 2, 196–198 (1997).
[28] D. V. Georgievskii, ”Stability of processes of deformation by a set of measures with respect to given classes of perturbations,” Izv. Ross. Akad. Nauk. Mekh. Tv. Tela, No. 2, 69–92 (1997).
[29] D. V. Georgievskii, ”The integral relations method in problems of stability of nonlinear flows with the kinematics given on the boundary,” Izv. Ross. Akad. Nauk. Mekh. Tv. Tela, No. 1, 102–113 (1997).
[30] D. V. Georgievskii, Stability of Processes of Deformation of Viscoplastic Bodies, URSS, Moscow (1998) [in Russian].
[31] D. V. Georgievskii, ”Nonlinear isotropic tensor functions in the theory of constitutive relations,” Dokl. Ross. Akad. Nauk, 366, No. 4, 483–485 (1999).
[32] D. V. Georgievskii, ”Certain non-one-dimensional problems of viscoplasticity: rigid zones and stability,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 61–78 (2001).
[33] D. V. Georgievskii, ”Tensorially nonlinear effects in isothermic deformation of continua,” Usp. Mekh., 1, No. 2, 150–176 (2002).
[34] G. Z. Gershuni and E. M. Zhukhovitskii, ”On convective stability of the Bingham fluid,” Dokl. Akad. Nauk SSSR, 208, No. 1, 63–65 (1973).
[35] A. V. Gnoevoi, D. M. Klimov, and V. N. Chesnokov, ”One method of studying spatial flows of viscoplastic media,” Izv. Ross. Akad. Nauk. Mekh. Tv. Tela, No. 4, 150–158 (1993).
[36] M. A. Gol’dshtik and V. N. Shtern, Hydrodynamic Stability and Turbulence [in Russian], Nauka, Novosibirsk (1977).
[37] A. N. Guz’, Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971). · Zbl 0233.73066
[38] E. A. Demekhin and V. Ya. Shkadov, ”On nonstationary waves in a layer of a viscous fluid,” Izv. Akad. Nauk SSSR. M!ekh. Zhid. Gaz., No. 3, 151–154 (1981).
[39] A. K. Egorov and Zh. Sh. Zhantaev, ”To the stability of a viscoplastic flow of a heavy layered medium,” in: Mechanics of Tectonic Processes [in Russian], Nauka, Alma-Ata (1983). · Zbl 0465.73024
[40] Zh. S. Erzhanov, A. K. Egorov, and Zh. Sh. Zhantaev, ”Stability of viscoplastic flow of a heavy layered medium,” Izv. Akad. Nauk Kaz. SSR. Ser. Fiz.-Mat., No. 1, 17–23 (1981). · Zbl 0465.73024
[41] Zh. S. Erzhanov and A. K. Egorov, ”Stability of the viscoplastic flow of a hollow thick-wall ball,” Izv. Akad. Nauk Kaz. SSR. Ser. Fiz.-Mat., No. 1, 34–38 (1984). · Zbl 0554.73046
[42] V. V. Zametalin, ”Stability of a laminar boundary layer of a power non-Newtonian fluid,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 101–106 (1976).
[43] V. A. Znamenskii and V. P. Zubov, ”Motion of a viscoplastic medium in a circular tube under variable pressure difference,” Prikl. Mekh., 6, No. 3, 117–121 (1970).
[44] Yu. P. Ivanilov, ”On the stability of a plane-parallel flow of a viscous fluid over an inclined bottom,” Prikl. Mat. Mekh., 24, No. 2, 380–381 (1960). · Zbl 0106.40102
[45] Yih Chia-Shun, Wave Motions in Layered Media. Nonlinear Waves [Russian transl.], Mir, Moscow (1977). · Zbl 0363.76028
[46] A. A. Il’yushin, ”Deformation of a viscoplastic body,” Uchen. Zap. Mosk. Gos. Univ. Mekh., 39, 3–81 (1940).
[47] A. A. Il’yushin, Mechanics of a Continuum [in Russian], Izd. Mosk. Gos. Univ., Moscow (1990).
[48] A. Yu. Ishlinski, ”On the stability of a viscoplastic flow of a circular plate,” Prikl. Mat. Mekh., 7, No. 6, 405–412 (1943).
[49] A. Yu. Ishlinskii, ”On the stability of a viscoplastic flow of a band and circular bar,” Prikl. Mat. Mekh., 7, No 2, 109–130 (1943).
[50] I. V. Keppen and S. Yu. Rodionov, ”Extension-Contraction of a band made of a nonlinear viscoplastic material,” in: Elasticity and Nonelasticity [in Russian], Izd. Mosk. Gos. Univ., Moscow (1987).
[51] V. D. Klyushnikov, Lectures on Stability of Deformable Systems [in Russian], Izd. Mosk. Gos. Univ., Moscow (1986). · Zbl 0659.73046
[52] O. R. Kozyrev and Yu. A. Stepanyants, ”On an estimate of parameters of increasing perturbations in shear flows of viscous stratified fluid,” Prikl. Mat. Mekh., 53, No. 3, 522–525 (1989).
[53] O. R. Kozyrev and Yu. A. Stepanyants, ”Integral relations method in the linear theory of hydrodynamic stability,” Itogi Nauki Tekhniki. Ser. Mekh. Zhidkosti Gaza, VINITI, Moscow (1991), 25, 3–89.
[54] N. E. Kochin, I. A. Kibel’, N. V. Roze, Theoretical Hydromechanics, Part. 2, Fizmatgiz, Moscow (1963) [in Russian]. · Zbl 0121.20301
[55] M. A. Lavrent’ev and B. V. Shabat, Methods of Theory of Functions of Complex Variable [in Russian]. Nauka, Moscow (1987).
[56] E. A. Leonova, ”Invariant properties of thermoviscoplasticity equations with incomplete information on properties of the medium,” in Elasticity and Nonelasticity. Part 1 [in Russian], Izd. Mosk. Gos. Univ., Moscow (1994).
[57] N. P. Leshchii, ”Transition from a laminar to turbulent regime of flow for nonlinear viscoplastic fluids,” Hydraulics and Hydroengineering, Kiev, No. 33, 81–86 (1981).
[58] A. I. Litvinov, ”Semi-empirical description of turbulence of viscoplastic fluids,” Izv. Akad. Nauk Uzb. SSR. Ser. Tekhnich., No. 5, 46–50 (1975).
[59] G. M. Lyakhov and K. S. Sultanov, ”Questions of similarity and dispersion of waves in viscoplastic media,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 86–93 (1975).
[60] O. B. Magomedov and B. E. Pobedrya, ”Certain problems of viscoelastoplastic flow,” in Elasticity and Nonelasticity [in Russian], Izd. Mosk. Gos. Univ., Moscow (1975), No. 4, 152–169.
[61] A. M. Makarov and V. G. Sal’nikov, ”Nonstationary shear flow of a viscoplastic medium,” Zh. Prikl. Mekh. Tekhn. Fiz., No. 4, 133–137 (1972).
[62] A. M. Makarov, V. G. Sal’nikov, and T. F. Trusova, ”Inverse problem on nonstationary gradient flow of a Shvedov-Bingham plastic in a plane channel and in a cylindrical tube,” Inzh.-Fiz. Zh., 24, No. 4, 725–729 (1973).
[63] N. V. Mikhailov and P. A. Rebinder, ”On structural and mechanical properties of dispersive and high-molecular systems,” Kolloidn. Zh., 17, No. 2, 107–109 (1955).
[64] P. P. Mosolov and V. P. Myasnikov, ”On rectilinear motions of a perfectly plastic medium,” Dokl. Akad. Nauk SSSR, 174, No. 3, 541–544 (1967). · Zbl 0161.44604
[65] P. P. Mosolov and V. P. Myasnikov, Variational Methods in the Theory of Flows of Rigidly Viscoplastic Media, Izd. Mosk. Gos. Univ., Moscow (1971) [in Russian]. · Zbl 0248.52011
[66] P. M. Ogibalov and A. Kh. Mirzadzhanzade, Nonstationary Motions of Viscoplastic Media [in Russian], Nauka, Moscow (1977).
[67] K. B. Pavlov, A. S. Romanov, and S. L. Sinkhovich, ”Hydrodynamic stability of the Hartmann flow of a non-Newtonian viscoplastic fluid,” Magn. Gidrodinam., No. 4, 43–46 (1974).
[68] K. B. Pavlov, A. S. Romanov, and S. L. Sinkhovich, ”Hydrodynamic instability of the Poiseuille flow of anon-Newtonian viscoplastic fluid,” Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza, No. 6, 152–154 (1974).
[69] K. B. Pavlov, A. S. Romanov, and S. L. Sinkhovich, ”Stability of the Poiseuille flow of a viscoplastic fluid with respect to perturbations of finite amplitude,” Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza, No. 5, 166–169 (1975).
[70] A. G. Petrov, ”On the optimization of control processes for viscoplastic flow in a thin layer with changeable shapes of boundaries,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 127–132 (1997).
[71] B. E. Pobedrya, Mechanics of Composite Materials [in Russian], Izd. Mosk. Gos. Univ., Moscow (1984). · Zbl 0555.73069
[72] B. E. Pobedrya, Lectures on Tensor Analysis [in Russian], Izd. Mosk. Gos. Univ., Moscow (1986). · Zbl 0616.53001
[73] B. E. Pobedrya, Numerical Methods in the Theory of Elasticity and Plasticity [in Russian], Izd. Mosk. Gos. Univ., Moscow (1995).
[74] G. P. Prikazchikov, ”On the stability of flow of a viscoplastic medium between planes with slots,” Vestn. Mosk. Gos. Univ. Ser. Mat. Mekh., No. 3, 51–55 (1964).
[75] P. Padgina, Basic Questions of Viscoplasticity [Russian transl.], Mir, Moscow (1968).
[76] Kh. Ramberg, Gravity Force and Deformations in the Earth’s Crust, Nedra, Moscow (1985).
[77] T. M. Rasulov, ”Solution of the mixed problem for a linearized set of equations of motion of viscoplastic media,” Differents. Uravn., 27, No. 9, 1610–1617 (1991). · Zbl 0737.73047
[78] K. Rectoris, Variational Methods in Mathematical Physics and Engineering [Russian transl.], Mir, Moscow (1985).
[79] A. I. Safronchik, ”Non-steady-state flow of a viscoplastic material between two parallel walls,” Prikl. Mat. Mekh., 23, No. 5, 925–935 (1959). · Zbl 0098.39305
[80] A. I. Safronchik, ”Rotation of a cylinder with variable angular velocity in a viscoplastic medium,” Prikl. Mat. Mekh., 23, No. 6, 1051–1056 (1959). · Zbl 0095.40105
[81] A. I. Safronchik, ”Non-steady-state flow of a viscoplastic material in a circular tube,” Prikl. Mat. Mekh., 24, No. 1, 149–153 (1960). · Zbl 0125.41503
[82] S. V. Serikov, ”On the stability of a viscoplastic ring,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 101–106 (1976). · Zbl 0491.73038
[83] S. V. Serikov, ”Nonstationary extension of a viscoplastic rectilinear band,” Dinamika Sploshnoi Sredy, No. 49, 100–106, Novosibirsk (1981). · Zbl 0491.73038
[84] S. L. Simkhovich, A. S. Romanov, and L. I. Ionochkina, ”Hydrodynamic stability of a plane gradient flow of a generalized nonlinear viscoplastic fluid,” Inzh.-Fiz. Zh., 45, No. 1, 60–64 (1983).
[85] S. A. Stepin, ”Hydrodynamic Rayleigh problem: theorem of expansion in eigenfunctions and the stability of plane-parallel flows,” Izv. Ross. Akad. Nauk. Ser. Mat., 60, No. 6, 201–221 (1996). · Zbl 0895.76031
[86] N. V. Tyabin, ”On the similarity of flows of a viscoplastic fluid,” Kolloidn. Zh., 14, No. 4, 270–273 (1952).
[87] E. T. Whittaker and G. N. Watson, A Course in Modern Analysis. Part 2. Transcendental Functions [Russian transl.], Fizmatgiz, Moscow (1963). · Zbl 0108.26903
[88] G. B. Froishteter, A. N. Nakorchevskii, V. V. Sinitsyn, and E. I. Tsetsokho, ”Loss of stability of a laminar form of motion under the flow of plastic lubricants in capillaries,” in: Applied Rheology. 2, Izd. Inst. Teplo-Massoobmena Akad. Nauk Bel. SSR, Minsk (1970).
[89] U. Hokke, ”Motion of two layers of viscous incompressible fluids on an inclined plane under the force of gravity. A study of hydrodynamic stability,” in: Dynamical Problems of Mechanics of Continua, Izd. Mosk. Gos. Univ., Moscow (1990).
[90] F. A. Shikhaliev, ”On similarity parameters in the motion of viscoplastic fluids in tubes,” Izv. Akad. Nauk SSSR. Mekh. Mashinostr., No. 1, 153–154 (1963).
[91] V. Ya. Shkadov, ”Wave regimes of flow of a thin layer of a viscous fluid under the action of the force of gravity,” Izv. Akad. Nauk SSSR. Mekh. Zhidk. Gaza, No. 1, 43–51 (1967).
[92] V. Ya. Shkadov, Certain Methods and Problems of the Theory of Hydrodynamical Stability [in Russian], Izd. Mosk. Gos. Univ., Inst. Mekhaniki, Moscow (1973), No. 25.
[93] L. Anand, K. H. Kim, and T. G. Shawki, ”Onset of shear localization in viscoplastic solids,” J. Mech. Phys. Solids, 35, No. 4, 407–429 (1987). · Zbl 0612.73046 · doi:10.1016/0022-5096(87)90045-7
[94] C. Atkinson and K. El-Ali, ”Some boundary value problems for the Bingham model,” J. Non-Newton. Fluid Mech., 41, No. 3, 339–363 (1992). · Zbl 0747.76012 · doi:10.1016/0377-0257(92)87006-W
[95] J. Baranger, C. Guillopé, and J.-C. Saut, Mathematical Analysis of Differential Models for Viscoelastic Fluids, Départ. de Mathématiques. Univ. Paris XII, Val de Marne. Prépubl. No. 06-96.
[96] T. B. Benjamin, ”Quelques nouveaux rèsultats concernant des phènomènes de bifurcation en mècanique des fluids”, Lecture Notes in Physics, 91. Computing Methods in Applied Sci. and Engng. Proc. 3rd Int. Symp. Paris, December 5–9, 1977, Berlin, N.-Y.: Springer Verlag, 1979. · Zbl 0415.76025
[97] C. R. Beverly and R. I. Tanner, ”Numerical analysis of three-dimensional Bingham plastic flow,” J. Non-Newton. Fluid Mech., 42, Nos. 1–2, 85–115 (1992). · doi:10.1016/0377-0257(92)80006-J
[98] R. B. Bird, G. C. Dai, and B. J. Yarusso, ”The rheology and flow of viscoplastic materials,” Rev. Chem. Eng., 1, No. 1, 1–70 (1983).
[99] R. Bukowski and W. Wojewòdzki, ”Dynamic buckling of viscoplastic spherical shell,” Int. J. Solids Struct., 20, No. 8, 761–776 (1984). · Zbl 0546.73037 · doi:10.1016/0020-7683(84)90064-7
[100] T. J. Burns, ”Similarity and bifurcation in unstable viscoplastic solids,” SIAM J. Appl. Math., 49, No. 1, 314–329 (1989). · Zbl 0663.73023 · doi:10.1137/0149019
[101] R. P. Chhabra and P. H. T. Uhlherr, ”Static equilibrium and motion of spheres in viscoplastic liquids,” Encyclopedia of Fluid Mechanics, 7, Rheology and Non-Newton, Flows, Houston: Gulf. Publ., 1988.
[102] D. Coles, ”Transition in circular Couette flow,” J. Fluid Mech., 21, 385–425 (1965). · Zbl 0134.21705 · doi:10.1017/S0022112065000241
[103] E. Comparini, ”A one-dimensional Bingham flow,” J. Math. Anal. Appl., 169, No. 1, 127–139 (1992). · Zbl 0763.76003 · doi:10.1016/0022-247X(92)90107-O
[104] N. Cristescu, J. Suliciu, Viscoplasticitate, Bucureşti, Ed. tehn. (1976).
[105] P. G. Drazin, ”On stability of parallel flow of an incompressible fluid with variable density and viscosity,” Proc. Cambridge Philos. Soc., 58, 649–661 (1962). · Zbl 0111.39103 · doi:10.1017/S030500410004069X
[106] P. G. Drazin and W. H. Reid, Hydrodynamical Stability, Cambridge Univ. Press (1981).
[107] Fan Chun, ”Flow of viscoplastic fluid on a rotating disk,” Appl. Math. Mech. (Yingyong Shuxue he Lixue), 15, No. 5, 421–427 (1984).
[108] A. F. Florence, ”Buckling of viscoplastic cylindrical shells due to impulsive loading,” AIAA J., 6, No. 3, 532–537 (1968). · doi:10.2514/3.4530
[109] A. F. Florence and G. R. Abrahamson, ”Critical velocity for collapse of viscoplastic cylindrical shells without buckling,” J. Appl. Mech., 44, No. 1, 89–94 (1977) · Zbl 0396.73091 · doi:10.1115/1.3424021
[110] I. A. Frigaard, S. D. Howison, and I. J. Sobey, ”On the stability of Poiseuille flow of a Bingham fluids,” J. Fluid Mech., 263, 133–150 (1994). · Zbl 0804.76036 · doi:10.1017/S0022112094004052
[111] Y. T. Fung, ”Non-axisymmetric instability of a rotating layer of fluid,” J. Fluid Mech., 127, 83–90 (1983). · Zbl 0524.76094 · doi:10.1017/S0022112083002621
[112] D. V. Georgievskii, ”Viscoplastic stratified composites: shear flows and stability,” Comput. Struct., 76, 205–210 (2000). · doi:10.1016/S0045-7949(99)00160-1
[113] D. V. Georgievskii, ”Isotropic nonlinear tensor functions in the theory of constitutive relations,” J. Math. Sci., 112, No. 5, 4498–4516 (2002). · Zbl 1161.74304 · doi:10.1023/A:1020522321721
[114] R. W. Hanks, ”The laminar-turbulent transition for fluids with a yield stress,” AICE J., 9, No. 3, 306–309 (1963). · doi:10.1002/aic.690090307
[115] R.’W. Hanks and E. B. Christiansen, ”The laminar-turbulent transition in nonisothermal flow of pseudoplastic fluids in tubes,” AICE J., 8, No. 4, 467–471 (1962). · doi:10.1002/aic.690080409
[116] R. W. Hanks and B. L. Ricks, ”Laminar-turbulent transition in flow of pseudoplastic fluids with yield stress,” J. Hydraut., 8, No. 4, 163–166 (1974).
[117] I. Hlaváček and J. Nečas, ”On inequalities of Korn’s type. Pt. 1,” Arch. Rat. Mech. Anal., 36, No. 4, 305–311 (1970). · Zbl 0193.39001 · doi:10.1007/BF00249518
[118] I. Hlaváček and J. Nečas, ”On inequalities of Korn’s type. Pt. 2,” Arch. Rat. Mech. Anal., 36, No. 4, 312–334 (1970). · Zbl 0193.39002 · doi:10.1007/BF00249519
[119] D. D. Joseph, ”Eigenvalue bounds for the Orr-Sommerfeld equation. Part 1,” J. Fluid Mech., 33, 617–621 (1968). · Zbl 0164.28703 · doi:10.1017/S0022112068001552
[120] D. D. Joseph, ”Eigenvalue bounds for the Orr-Sommerfeld equation. Part 2,” J. Fluid Mech., 36, 721–734 (1969). · Zbl 0175.52402 · doi:10.1017/S0022112069001959
[121] R. G. Larson, ”Instabilities in viscoelastic flows,” Rheol. Acta, 31, No. 3, 213–263 (1992). · doi:10.1007/BF00366504
[122] Y. M. Leroy and A. Molinari, ”Stability of steady states in shear zones,” J. Mech. Phys. Solids, 40, No. 1, 181–212 (1992). · doi:10.1016/0022-5096(92)90310-X
[123] A. Molinari and R. J. Clifton, ”Analytical characterization of shear localization in thermoviscoplastic materials,” Trans. ASME. J. Appl. Mech., 54, No. 4, 806–812 (1987). · Zbl 0633.73118 · doi:10.1115/1.3173121
[124] M. Nakamura and T. Sawada, ”Theoretical study on turbulence transition of Bingham plastic fluid in a pipe.” Trans. Jap. Soc. Mech. Eng. (Nihon Kikai Gakkai Ronbunshu), 51, No. 465, 1642–1647 (1985).
[125] M. Nakamura and T. Sawada, ”A k {\(\epsilon\)} model for the turbulent analysis of Bingham plastic fluid,” Trans. Jap. Soc. Mech. Eng. (Nihon Kikai Gakkai Ronbunshu), 52, No. 479, 2544–2551 (1986).
[126] J. A. Nohel and R. L. Pego, ”Nonlinear stability and asymptotic behaviour of shearing motions of a non-Newtonian fluid,” SIAM J. Math. Anal., 24, No. 4, 911–942 (1993). · Zbl 0783.76011 · doi:10.1137/0524056
[127] T. Oroveanu and M. Abbulescu, ”Unsteady flow of a Bingham plastic through a tube of circular cross-section, with time-dependent pressure gradient,” Rev. Roum. Sci. Tech. Ser. Mec. Appl., 37, No. 2, 165–175 (1992). · Zbl 0864.76004
[128] S. A. Orszag, ”Accurate solution of the Orr-Sommerfeld stability equation,” J. Fluid Mech., 50, No. 4, 689–703 (1971). · Zbl 0237.76027 · doi:10.1017/S0022112071002842
[129] J. P. Pascal and H. Rasmussen, ”Stability of power law fluid flow between rotating cylinders,” Dynam. Stabil. Syst., 10, No. 1, 65–93 (1995). · Zbl 0820.76039
[130] R. Raffai and P. Laure, ”The influence of an axial mean flow on the Couette-Taylor problem,” European J. Mech. B. Fluids, 12, No. 3, 277–288 (1993). · Zbl 0795.76036
[131] H. P. Ratnawan, ”Unsteady flow of Bingham plastic between two fixed coaxial cylinders under time dependent pressure gradient,” Deform. Sci. J., 20, No. 4, 213–218 (1970). · Zbl 0253.73030
[132] K. Sekimoto, ”An exact non-stationarity solution of simple shear flow in a Bingham fluid,” J. Non-Newton. Fluid Mech., 39, No. 1, 107–113 (1991). · Zbl 0718.76016 · doi:10.1016/0377-0257(91)80006-6
[133] H. B. Squire, ”On stability of three-dimensional disturbances of viscous flow between parallel walls,” Proc. Roy. Soc. London. Ser. A, 142, No. 847, 621–628 (1933). · JFM 59.1458.02 · doi:10.1098/rspa.1933.0193
[134] B. Storakes, ”Plastic and visco-plastic instability of a thin tube under internal pressure, torsion and axial tension,” Int. J. Mech. Sci., 10, No. 6, 519–529 (1968). · doi:10.1016/0020-7403(68)90032-5
[135] J. L. Synge, ”Hydrodynamical stability,” Semicentenn. Publ. Amer. Math. Soc., 2, 227–269 (1938). · JFM 64.0870.02
[136] P. Tugcu and K. W. Neale, ”Analysis of neck propagation in polymeric fibres including the effects of viscoplasticity,” Trans. ASME. J. Eng. Mater. Technol., 110, No. 4, 395–400 (1988). · doi:10.1115/1.3226068
[137] I. G. Vardoulakis, ”Stability and bifurcation in geomechanics,” Proc. 6th Int. Conf. on Numerical Methods in Geomechanics. Innsbruck, April 11–15 1988, 1, Rotterdam: Brookfield (1988).
[138] L.-L. Wang, ”A criterion of thermo-viscoplastic instability for adiabatic shearing,” Proc. Int. Symp. on Intense Dynam. Loading and Effects. Beijing, June 3–7, 1986, Oxford (1988).
[139] W. Wojewòdzki, ”Buckling of short viscoplastic cylindrical shells subjected to radial impulse,” Int. J. Non-Linear Mech., 8, 325–343 (1973). · Zbl 0286.73072 · doi:10.1016/0020-7462(73)90022-X
[140] W. Wojewòdzki W and P. Lewiński, ”Viscoplastic axisymmetrical buckling of spherical shell subjected to radial pressure impulse,” Eng. Struct., 3, 168–174 (1981). · doi:10.1016/0141-0296(81)90025-0
[141] C.-S. Yih, ”Note on eigenvalue bounds for the Orr-Sommerfeld equation,” J. Fluid Mech., 38, 273–278 (1969). · doi:10.1017/S0022112069000164
[142] C.-S. Yih, ”Wave velocity in parallel flows of a viscous fluid,” J. Fluid Mech., 58, No. 4, 703–708 (1973) · Zbl 0261.76026 · doi:10.1017/S0022112073002430
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.