Kim, Sang-hyun; Koberda, Thomas Diffeomorphism groups of critical regularity. (English) Zbl 1446.57020 Invent. Math. 221, No. 2, 421-501 (2020). For a circle or a compact real interval \(M\), let \(\mathrm{Diff}_+^\alpha(M)=\mathrm{Diff}_+^{k + \tau}(M)\) denote the group of orientation preserving \(C^k\) diffeomorphisms of \(M\) whose \(k\)th derivatives are Hölder continuous with exponent \(\tau=\alpha-k\) where \(k\) denotes the integral part of \(\alpha\). As the authors note, the purpose of the present paper is to study the algebraic structure of finitely generated subgroups of \(\mathrm{Diff}_+^\alpha(M)\) for varying \(\alpha\); in particular, the authors give the first construction of finitely generated groups and of countable simple groups in \(\mathrm{Diff}_+^\alpha(M)\) which are not contained in the union \(\bigcup_{\beta > \alpha}\mathrm{Diff}_+^\beta(M)\). More generally, the main result states that there is a continuum of isomorphism types of finitely generated subgroups \(G\) of \(\mathrm{Diff}_+^\alpha(M)\) (with simple commutator subgroups) such that \(G\) admits no injective homomorphisms into \(\bigcup_{\beta > \alpha}\mathrm{Diff}_+^\beta(M)\); dually, they prove that there is a continuum of isomorphism types of finitely generated subgroups \(G\) of \(\bigcap_{\beta < \alpha}\mathrm{Diff}_+^\beta(M)\) such that \(G\) admits no injective homomorphism into \(\mathrm{Diff}_+^\alpha(M)\). Some applications to smoothability of codimension one foliations are given; also, the class of finitely generated subgroups of \(\mathrm{Diff}_+^1(M)\) is not closed under taking finite free products. Reviewer: Bruno Zimmermann (Trieste) Cited in 4 Documents MSC: 57M60 Group actions on manifolds and cell complexes in low dimensions 20F36 Braid groups; Artin groups 37C05 Dynamical systems involving smooth mappings and diffeomorphisms 37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\) 57S05 Topological properties of groups of homeomorphisms or diffeomorphisms Keywords:\(C^k\)-diffeomorphism groups of a circle or a closed interval; Hölder continuous derivatives; finitely generated and countable simple subgroups PDF BibTeX XML Cite \textit{S.-h. Kim} and \textit{T. Koberda}, Invent. Math. 221, No. 2, 421--501 (2020; Zbl 1446.57020) Full Text: DOI arXiv OpenURL References: [1] Bader, U.; Furman, A.; Gelander, T.; Monod, N., Property (T) and rigidity for actions on Banach spaces, Acta Math., 198, 1, 57-105 (2007) · Zbl 1162.22005 [2] Baik, H.; Kim, S.; Koberda, T., Unsmoothable group actions on compact one-manifolds, J. Eur. Math. Soc. (JEMS), 21, 8, 2333-2353 (2019) · Zbl 1454.20074 [3] Baik, H.; Kim, S.; Koberda, T., Right-angled Artin groups in the \(C^\infty\) diffeomorphism group of the real line, Isr. J. Math., 213, 1, 175-182 (2016) · Zbl 1398.20045 [4] Banyaga, A., The Structure of Classical Diffeomorphism Groups, Mathematics and its Applications (1997), Dordrecht: Kluwer Academic Publishers Group, Dordrecht [5] Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Springer, Berlin (1976), Grundlehren der Mathematischen Wissenschaften, No. 223 · Zbl 0344.46071 [6] Bergman, GM, Right orderable groups that are not locally indicable, Pac. J. Math., 147, 2, 243-248 (1991) · Zbl 0677.06007 [7] Bonatti, C.; Lodha, Y.; Triestino, M., Hyperbolicity as an obstruction to smoothability for one-dimensional actions, Geom. Topol., 23, 4, 1841-1876 (2019) · Zbl 1428.37029 [8] Bonatti, C.; Monteverde, I.; Navas, A.; Rivas, C., Rigidity for \(C^1\) actions on the interval arising from hyperbolicity I: solvable groups, Math. Z., 286, 3-4, 919-949 (2017) · Zbl 1433.37030 [9] Bowditch, BH; Sakuma, M., The action of the mapping class group on the space of geodesic rays of a punctured hyperbolic surface, Groups Geom. Dyn., 12, 2, 703-719 (2018) · Zbl 1456.20042 [10] Brin, MG, Higher dimensional Thompson groups, Geom. Dedicata, 108, 163-192 (2004) · Zbl 1136.20025 [11] Brin, MG; Squier, CC, Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79, 3, 485-498 (1985) · Zbl 0563.57022 [12] Burger, M.; Monod, N., Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. (JEMS), 1, 2, 199-235 (1999) · Zbl 0932.22008 [13] Burger, M.; Mozes, S., Finitely presented simple groups and products of trees, C. R. Acad. Sci. Paris Sér. I Math., 324, 7, 747-752 (1997) · Zbl 0966.20013 [14] Burillo, J.: Thompson’s group F (preprint) (2016) [15] Calegari, D., Dynamical forcing of circular groups, Trans. Am. Math. Soc., 358, 8, 3473-3491 (2006) · Zbl 1134.37015 [16] Calegari, D., Nonsmoothable, locally indicable group actions on the interval, Algebr. Geom. Topol., 8, 1, 609-613 (2008) · Zbl 1154.37015 [17] Camacho, C., Neto, A.L.: Geometric theory of foliations, Birkhäuser Boston, Inc., Boston, MA (1985), Translated from the Portuguese by Sue E. Goodman · Zbl 0568.57002 [18] Candel, A., Conlon, L.: Foliations. I, Graduate Studies in Mathematics, vol. 23, American Mathematical Society, Providence, RI (2000) · Zbl 0936.57001 [19] Cannon, JW; Floyd, WJ; Parry, WR, Introductory notes on Richard Thompson’s groups, Enseign. Math. (2), 42, 3-4, 215-256 (1996) · Zbl 0880.20027 [20] Cantwell, J.; Conlon, L., Nonexponential leaves at finite level, Trans. Am. Math. Soc., 269, 2, 637-661 (1982) · Zbl 0487.57009 [21] Cantwell, J.; Conlon, L., Smoothability of proper foliations, Ann. Inst. Fourier (Grenoble), 38, 3, 219-244 (1988) · Zbl 0644.57013 [22] Castro, G.; Jorquera, E.; Navas, A., Sharp regularity for certain nilpotent group actions on the interval, Math. Ann., 359, 1-2, 101-152 (2014) · Zbl 1310.37020 [23] Denjoy, A., Sur la continuité des fonctions analytiques singulières, Bull. Soc. Math. France, 60, 27-105 (1932) · JFM 58.1077.04 [24] Deroin, B.; Kleptsyn, V.; Navas, A., Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math., 199, 2, 199-262 (2007) · Zbl 1139.37025 [25] Epstein, DBA, The simplicity of certain groups of homeomorphisms, Compos. Math., 22, 165-173 (1970) · Zbl 0205.28201 [26] Evans, LC, Partial Differential Equations, 2nd ed., Graduate Studies in Mathematics (2010), Providence, RI: American Mathematical Society, Providence, RI [27] Farb, B., Franks, J.: Groups of homeomorphisms of one-manifolds, I: actions of nonlinear groups, ArXiv Mathematics e-prints (2001) [28] Farb, B.; Franks, J., Groups of homeomorphisms of one-manifolds. III. Nilpotent subgroups, Ergod. Theory Dyn. Syst., 23, 5, 1467-1484 (2003) · Zbl 1037.37020 [29] Ghys, É., Actions de réseaux sur le cercle, Invent. Math., 137, 1, 199-231 (1999) · Zbl 0995.57006 [30] Ghys, É.; Sergiescu, V., Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv., 62, 2, 185-239 (1987) · Zbl 0647.58009 [31] Goodman, SE, Closed leaves in foliations of codimension one, Comment. Math. Helv., 50, 3, 383-388 (1975) · Zbl 0318.57027 [32] Guelman, N.; Liousse, I., \(C^1\)-actions of Baumslag-Solitar groups on \(S^1\), Algebr. Geom. Topol., 11, 3, 1701-1707 (2011) · Zbl 1221.37048 [33] Handel, M.; Thurston, WP, New proofs of some results of Nielsen, Adv. Math., 56, 2, 173-191 (1985) · Zbl 0584.57007 [34] Hölder, O.: The axioms of quantity and the theory of measurement. J. Math. Psych. 40 (1996), no. 3, 235-252, Translated from the 1901 German original and with notes by Joel Michell and Catherine Ernst, With an introduction by Michell · Zbl 0889.92035 [35] Hurtado, S., Continuity of discrete homomorphisms of diffeomorphism groups, Geom. Topol., 19, 4, 2117-2154 (2015) · Zbl 1322.57026 [36] Jorquera, E., A universal nilpotent group of \(C^1\) diffeomorphisms of the interval, Topol. Appl., 159, 8, 2115-2126 (2012) · Zbl 1267.57039 [37] Jorquera, E.; Navas, A.; Rivas, C., On the sharp regularity for arbitrary actions of nilpotent groups on the interval: the case of \(N_4\), Ergod. Theory Dyn. Syst., 38, 1, 180-194 (2018) · Zbl 1387.37029 [38] Juschenko, K.; Monod, N., Cantor systems, piecewise translations and simple amenable groups, Ann. Math. (2), 178, 2, 775-787 (2013) · Zbl 1283.37011 [39] Kim, S.; Koberda, T., Anti-trees and right-angled Artin subgroups of braid groups, Geom. Topol., 19, 6, 3289-3306 (2015) · Zbl 1351.20021 [40] Kim, S.; Koberda, T., Free products and the algebraic structure of diffeomorphism groups, J. Topol., 11, 4, 1054-1076 (2018) · Zbl 1408.57020 [41] Kim, S.; Koberda, T.; Lodha, Y., Chain groups of homeomorphisms of the interval, Ann. Sci. Éc. Norm. Supér. (4), 52, 4, 797-820 (2019) · Zbl 07144472 [42] Koberda, T., Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups, Geom. Funct. Anal., 22, 6, 1541-1590 (2012) · Zbl 1282.37024 [43] Koberda, T., Lodha, Y.: Two-chains and square roots of Thompson’s group \(F\). Ergod. Theory Dyn. Syst. (to appear) [44] Kopell, N.: Commuting diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968). Am. Math. Soc., Provid., R.I., 1970, pp. 165-184 [45] Ling, W., Factorizable groups of homeomorphisms, Compos. Math., 51, 1, 41-50 (1984) · Zbl 0529.58009 [46] Lodha, Y.; Moore, JT, A nonamenable finitely presented group of piecewise projective homeomorphisms, Groups Geom. Dyn., 10, 1, 177-200 (2016) · Zbl 1336.43001 [47] Mann, K., Homomorphisms between diffeomorphism groups, Ergod. Theory Dyn. Syst., 35, 1, 192-214 (2015) · Zbl 1311.57047 [48] Mann, K., Automatic continuity for homeomorphism groups and applications, Geom. Topol., 20, 5, 3033-3056 (2016) · Zbl 1362.57044 [49] Mann, K., A short proof that \({{\rm Diff}}_c(M)\) is perfect, N. Y. J. Math., 22, 49-55 (2016) · Zbl 1335.57044 [50] Margulis, GA, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] (1991), Berlin: Springer, Berlin [51] Mather, JN, Commutators of diffeomorphisms, Comment. Math. Helv., 49, 512-528 (1974) · Zbl 0289.57014 [52] Mather, JN, Commutators of diffeomorphisms. II, Comment. Math. Helv., 50, 33-40 (1975) · Zbl 0299.58008 [53] Moser, L., On the series, \( \sum 1/p\), Am. Math. Mon., 65, 104-105 (1958) · Zbl 0081.27205 [54] Muller, M.P.: Sur l’approximation et l’instabilité des feuilletages (unpublished) [55] Navas, A., Actions de groupes de Kazhdan sur le cercle, Ann. Sci. École Norm. Sup. (4), 35, 5, 749-758 (2002) · Zbl 1028.58010 [56] Navas, A., Growth of groups and diffeomorphisms of the interval, Geom. Funct. Anal., 18, 3, 988-1028 (2008) · Zbl 1201.37060 [57] Navas, A., A finitely generated, locally indicable group with no faithful action by \(C^1\) diffeomorphisms of the interval, Geom. Topol., 14, 1, 573-584 (2010) · Zbl 1197.37022 [58] Navas, A.: Groups of circle diffeomorphisms, Spanish ed., Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL (2011) · Zbl 1236.37002 [59] Nielsen, J., Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math., 50, 1, 189-358 (1927) · JFM 53.0545.12 [60] Palis, J., Smale, S.: Structural stability theorems, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968). Am. Math. Soc., Providence, R.I., 1970, pp. 223-231 [61] Parwani, K., \(C^1\) actions on the mapping class groups on the circle, Algebr. Geom. Topol., 8, 2, 935-944 (2008) · Zbl 1155.37028 [62] Plante, JF; Thurston, WP, Polynomial growth in holonomy groups of foliations, Comment. Math. Helv., 51, 4, 567-584 (1976) · Zbl 0348.57009 [63] Raghunathan, M.S.: Discrete subgroups of Lie groups. Springer, New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68 · Zbl 0254.22005 [64] Šalát, T., On subseries, Math. Z., 85, 209-225 (1964) · Zbl 0127.28801 [65] Thurston, WP, Foliations and groups of diffeomorphisms, Bull. Am. Math. Soc., 80, 304-307 (1974) · Zbl 0295.57014 [66] Thurston, WP, A generalization of the Reeb stability theorem, Topology, 13, 347-352 (1974) · Zbl 0305.57025 [67] Thurston, WP, Existence of codimension-one foliations, Ann. Math. (2), 104, 2, 249-268 (1976) · Zbl 0347.57014 [68] Tsuboi, T.: \( \Gamma_1\)-structures avec une seule feuille, Astérisque (1984), no. 116, 222-234, Transversal structure of foliations (Toulouse, 1982) [69] Tsuboi, T., Examples of nonsmoothable actions on the interval, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 34, 2, 271-274 (1987) · Zbl 0671.58018 [70] Dave Witte Morris, Arithmetic groups of higher \({ Q}\)-rank cannot act on \(1\)-manifolds, Proc. Am. Math. Soc., 122, 2, 333-340 (1994) · Zbl 0818.22006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.