Zomorrodian, Reza; Macbeath, Murray On Seifert-fibre groups and the Bailey-Neumann theorem. (English) Zbl 1513.57009 JP J. Geom. Topol. 26, No. 1, 1-38 (2021). Summary: In this paper, we investigate the Seifert-fiber groups further when they act as the fundamental groups of the 3-dimensional Seifert spaces. The groups under investigation are related to the fundamental groups in a similar way the Fuchsian groups are related to fundamental groups of Riemann surfaces [R. Zomorrodian, JP J. Geom. Topol. 9, No. 2, 169–188 (2009; Zbl 1258.20039), ibid. 14, No. 1, 87–98 (2013; Zbl 1298.20060) and ibid. 21, No. 2, 105–118 (2018; Zbl 1429.20034)]. We also discuss the invariant Euler number and its generalization as smooth circle bundle. The essential property of which has been discovered independently by Baily, Raymond Neumann, and Vasquez. MSC: 57M07 Topological methods in group theory 57M05 Fundamental group, presentations, free differential calculus 20H10 Fuchsian groups and their generalizations (group-theoretic aspects) Keywords:Seifert fiber groups; Seifert fiber spaces; fundamental groups; Fuchsian groups; 3-dimensional Brieskorn manifolds; discrete subgroup; stabilizer class; Euler characteristic; Reidemeister-Schreier calculation Citations:Zbl 1258.20039; Zbl 1298.20060; Zbl 1429.20034 PDFBibTeX XMLCite \textit{R. Zomorrodian} and \textit{M. Macbeath}, JP J. Geom. Topol. 26, No. 1, 1--38 (2021; Zbl 1513.57009) Full Text: DOI References: [1] Louis Auslander, F. Hahn and L. Green, Flows on Homogeneous Spaces, (AM-53), Volume 53, Princeton, 1963. · Zbl 0099.39103 [2] G. O. Bailey, Uncharacteristically Euler!, Ph.D. Thesis, Birmingham, England, 1977. [3] P. E. Conner and F. Raymond, Actions of compact Lie groups on Aspherical manifolds, Topology of Manifolds (Proc. Inst., University of Georgia, Athens, Ga, 1969) and Markham, Chicago Ill, 1970, pp. 227-264. · Zbl 0312.57025 [4] E. Brieskorn, Beispiele Zur Differential-Topologie Von Singularitaten, Inventiones, Math. 2 (1966), 1-14. · Zbl 0145.17804 [5] I. V. Dolgacev, Automorphic forms and quasi-homogeneous singularities function, Anal. 9(2) (1975), 67-8. · Zbl 0321.14003 [6] W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quarterly J. Math. (Oxford) 17(2) (1966), 86-97. · Zbl 0156.08901 [7] A. H. M. H. Hoare, A. Karrass and D. Solitar, Subgroups of finite index of Fuchsian Groups, Math. Z. 120 (1971), 289-298. · Zbl 0223.20053 [8] J. Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys 8, Amer. Math. Soc. Providence, R.I., 1964. · Zbl 0178.42902 [9] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Ergebnisse der Math., Vol. 89, Springer, Berlin, Heidelberg, New York, 1977. · Zbl 0368.20023 [10] A. M. Macbeath, Discontinuous groups and birational transformations, Proc. Summer School, Queen’s College, Dundee, 1961 (Cyclostyled notes). [11] On Seifert-Fibre Groups and the Bailey-Neumann Theorem 37 [12] A. M. Macbeath and D. Singerman, Spaces of subgroups and Teichmuller space, Proc. London Math. Soc. 31(3) (1975), 211-256. · Zbl 0314.32012 [13] C. MacLachlan, Abelian Groups of automorphisms of compact Riemann surfaces, Proc. London Math. Soc. 15(3) (1965), 699-712. · Zbl 0156.08902 [14] B. Maskit, On Poincare’s theorem for fundamental polygons, Advances in Math. (1971), 219-230. · Zbl 0223.30008 [15] M. H. Millington, Subgroups of the classical Modular groups, Journal of London Math. Soc. 1(2) (1969), 351-357. · Zbl 0206.36801 [16] J. Milnor, On the 3-dimentional Brieskorn manifolds, P. 175-225 in “Knots Groups and 3-Manifolds”, Annals of Math. Studies 84, Princeton, 1975. · Zbl 0305.57003 [17] J. Milnor and W. P. Thurston, On characteristic numbers for 3-manifolds, to appear. · Zbl 0393.57002 [18] W. D. Neumann, 1 S actions and the -invariant of their involutions, Bonner Math. · Zbl 0219.57030 [19] Schriften 44 (1970), Bonn. · JFM 57.1304.03 [20] W. D. Neumann, Brieskorn complete intersections and automorphic forms, Inventions Math. 42 (1977), 285-293. · Zbl 0366.32015 [21] W. D. Neumann and F. Raymond, Seifert Manifolds, Plumbing, μ -Invariant and orientation Reserving Maps. · Zbl 0401.57018 [22] Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics 291, Springer, Berlin, Heidelberg, New York, 1972. · Zbl 0263.57001 [23] Peter Orlik, E. Vogt and H. Zieschang, Zur Topologie gefaserter dreidimentionaler Mannigfaltigkeiten, Topology 6 (1967), 49-64. · Zbl 0147.23503 [24] R. C. Randell, The homology of generalized Brieskorn manifolds, Topology 14 (1975), 347-355. · Zbl 0317.57012 [25] D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bull. London Math. Soc. 2 (1970), 319-323. · Zbl 0206.30804 [26] D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Phil. Soc. 76 (1974), 233-240. · Zbl 0284.20053 [27] H. C. Wilkie, On non-Euclidean crystallographic groups, Math. Z. 91 (1966), 87-102. · Zbl 0166.02602 [28] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-238. · Zbl 0006.08304 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.