×

On the notion of Jacobi fields in constrained calculus of variations. (English) Zbl 1364.49022

Summary: In variational calculus, the minimality of a given functional under arbitrary deformations with fixed end-points is established through an analysis of the so-called second variation. In this paper, the argument is examined in the context of constrained variational calculus, assuming piecewise differentiable extremals, commonly referred to as extremaloids. The approach relies on the existence of a fully covariant representation of the second variation of the action functional, based on a family of local gauge transformations of the original Lagrangian and on a set of scalar attributes of the extremaloid, called the corners’ strengths [the author et al., Int. J. Geom. Methods Mod. Phys. 13, No. 4, Article ID 1650038, 39 p. (2016; Zbl 1345.49026)]. In discussing the positivity of the second variation, a relevant role is played by the Jacobi fields, defined as infinitesimal generators of \(1\)-parameter groups of diffeomorphisms preserving the extremaloids. Along a piecewise differentiable extremal, these fields are generally discontinuous across the corners. A thorough analysis of this point is presented. An alternative characterization of the Jacobi fields as solutions of a suitable accessory variational problem is established.

MSC:

49K15 Optimality conditions for problems involving ordinary differential equations
70Q05 Control of mechanical systems

Citations:

Zbl 1345.49026
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bolza, O.: The Determination of the Conjugate Points for Discontinuous Solutions in the Calculus of Variations. Amer. J. Math., 30, 1908, 209-221, | · JFM 39.0441.02
[2] Caratheodory, C.: Über die diskontinuierlichen Lösungen in der Variationsrechnung, Doctor-Dissertation, Universität Göttingen 1904. Gesammelte Mathematische Scriften, 1954, C. H. Beck’sche Verlagsbuchhandlulng,
[3] Caratheodory, C.: Über die starken Maxima und Minima bei einfachen Integralen, Habilitationsschrift, Universität Gottingen 1905. Mathematische Annalen, 62, 1906, 449-503, | · JFM 37.0396.01
[4] Caratheodory, C.: Sur les points singuliers du problème du Calcul des Variations dans le plan. Annali di Matematica pura e applicata, 21, 1913, 153-171, · JFM 44.0443.02
[5] Dresden, A.: An Example of the Indicatrix in the Calculus of Variations. Am. Math. Mon., 14, 1907, 119-126, | · JFM 38.0411.04
[6] Dresden, A.: An Example of the Indicatrix in the Calculus of Variations (continued). Am. Math. Mon., 14, 1907, 143-150, | · JFM 38.0411.04
[7] Dresden, A.: The Second Derivatives of the Extremal-Integral. Trans. Amer. Math. Soc., 9, 1908, 467-486, | · JFM 39.0442.01
[8] Erdmann, G.: Über die unstetige Lösungen in der Variationsrechnung. J. Reine Angew. Math., 82, 1877, 21-30, · JFM 08.0224.02
[9] Giaquinta, M., Hildebrandt, S.: Calculus of variations I, II. 1996, Springer-Verlag, Berlin, Heidelberg, New York, · Zbl 0853.49001
[10] Graves, L.M.: Discontinuous Solutions in the Calculus of Variations. Bull. Amer. Math. Soc., 36, 1930, 831-846, | · JFM 56.0432.03
[11] Graves, L.M.: Discontinuous Solutions in Space Problems of the Calculus of Variations. Amer. J. Math., 52, 1930, 1-28, | · JFM 56.0432.04
[12] Hadamard, J.: Leçons sur le calcul des variations. Hermann et fils, Paris, 1910, 3-88,
[13] Hestenes, M. R.: Calculus of variations and optimal control theory. 1966, Wiley, New York, London, Sydney, | · Zbl 0173.35703
[14] Massa, E., Bruno, D., Luria, G., Pagani, E.: Geometric constrained variational calculus. I: Piecewise smooth extremals. Int. J. Geom. Methods Mod. Phys., 12, 2015, 1550061. | | · Zbl 1319.49031
[15] Massa, E., Bruno, D., Luria, G., Pagani, E.: Geometric constrained variational calculus. II: The second variation (Part I). Int. J. Geom. Methods Mod. Phys., 13, 2016, 1550132. | · Zbl 1345.49025
[16] Massa, E., Luria, G., Pagani,, E.: Geometric constrained variational calculus. III: The second variation (Part II). Int. J. Geom. Methods Mod. Phys., 13, 2016, 1650038. | · Zbl 1345.49026
[17] Milyutin, A. A., Osmolovskii, N. P.: Calculus of Variations and Optimal Control (Translations of Mathematical Monographs). 1998, American Mathematical Society,
[18] Osmolovskii, N.P., Lempio, F.: Jacobi conditions and the Riccati equation for a broken extremal. J. Math. Sci, 100, 2000, 2572-2592, | · Zbl 0968.49016
[19] Osmolovskii, N.P., Lempio, F.: Transformation of Quadratic Forms to Perfect Squares for Broken Extremals. Set-Valued Var. Anal., 10, 2002, 209-232, | · Zbl 1050.49016
[20] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The mathematical theory of optimal processes. 1962, Interscience Publishers John Wiley & Sons Inc, New York-London,
[21] Reid, W.T.: Discontinuous Solutions in the Non-Parametric Problem of Mayer in the Calculus of Variations. Amer. J. Math., 57, 1935, 69-93, | | · Zbl 0011.02704
[22] Rider, P.R.: The figuratix in the Calculus of Variations. Trans. Amer. Math. Soc., 28, 1926, 640-653, | · JFM 52.0507.01
[23] Sagan, H.: Introduction to the calculus of variations. 1969, McGraw–Hill Book Company, New York,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.