On Boolean algebras with a derivation. (English. Russian original) Zbl 0346.06013

Ukr. Math. J. 26(1974), 365-369 (1975); translation from Ukr. Mat. Zh. 26, 444-449 (1974).


06E05 Structure theory of Boolean algebras
03G05 Logical aspects of Boolean algebras
54A99 Generalities in topology
Full Text: DOI


[1] K. Kuratowski, ?Sur l’operation ? d’analysis situs,? Fund. Math.,3, 182-199 (1922). · JFM 48.0210.04
[2] K. Kuratowski and A. Mostowski, Set Theory, North Holland Publishing Co., Amsterdam (1968).
[3] M. Zarits’kii (M. Zarycki), ?Allgemeine Eigenschaften der Cantorschen Kohärenzen,? Trans. Amer. Math. Soc.,30, 498-506 (1928). · JFM 54.0098.05
[4] M. Zarits’kii, ?Derivation and coherence of abstract sets? [in Ukrainian], Zbirnik Matem. ? Prirodo-pisno?Likars’koi Sektsii Naukovogo Tovaristva,27, L’vov (1928).
[5] M. O. Zarits’kii, ?The role of cardinality in the notion of the derivation of a set in abstract spaces? [in Ukrainian], Naukovi Zap. L’vivs’kogo Universitetu, Ser. Fiz. ? Matem,5, No. 1 (1947).
[6] M. O. Zarits’kii, ?On an operation in the theory of points sets? [Ukrainian], L’vivs’-Ser. Fiz.?Matem.,12, No. 3 (1949).
[7] kogo Universitetu, Ser. Fiz. ?Matem.,12, No. 3, (1949).
[8] M. O. Zarits’kii, ?Boolean algebras with a closure and Boolean algebras with a derivation? [in Ukrainian], Doklady Akad. Nauk URSR, No. 1 (1955).
[9] W. Sierpinski, ?La notion de dérivée comme base d’ure théorie des ensembles abstraits,? Math. Ann.,97, 321-337 (1927). · JFM 52.0582.02
[10] S. T. Sanders, ?Derived sets and their complements,? Bull. Amer. Math. Soc.,42, 577-584 (1936). · Zbl 0015.10402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.