Nevai, Paul Géza Freud, orthogonal polynomials and Christoffel functions. A case study. (English) Zbl 0606.42020 J. Approximation Theory 48, 3-167 (1986). This voluminous paper treats one aspect of the work done by Geza Freud: the consistent use of the concept of Christoffel functions in the theory of orthogonal polynomials is highlighted. Not only did Freud himself contribute greatly to the development of the theory, but he was also the initiator and stimulator of an avalanche of publications on the subject. It is not possible to pay the respect due to all these mathematicians who have built the beautiful structure as is known nowadays (the list of references contains - apart from 72 papers due to Freud alone - some 445 references!), therefore only a paragraph-wise treatment of the ”monograph” under review will be given. After some history, notation and philosophy - in that order - the author turns his attention to the subject of polynomials orthogonal on finite intervals and on the unit circle (approx. 72 pages, crammed with information). Using as tool the Christoffel function \(\lambda_ n(d\alpha,x)\) which is nothing else but the minimum of the integrals \(\int_{{\mathbb{R}}}| P(t)|^ 2d\alpha (t)\) taken over all polynomials of degree \(\leq n-1\) satisfying \(P(x)=1\), the subjects of Tauberian theorems with remainder terms, (absolute) convergence of orthogonal Fourier series and strong Cesáro summability are looked into. This is followed by quite a number of results on the asymptotic behaviour of the \(\lambda_ n\), starting with the most recent results and some discussion on historical developments. After applications of Christoffel functions to quadrature sums, interpolation (Lagrange, Hermite-Fejer), Szegö’s theory, zeros/asymptotics for orthogonal polynomials and equiconvergence of Fourier series, the stage is set (in a section called ”farewell to orthogonal polynomials on finite intervals”) for the second part of the paper (approx. 60 pages) on orthogonal polynomials on infinite intervals. The attention is, at first, focused on so-called Freud-weights \(d\alpha =w(x)dx\) with \(w(x)=\exp (-Q(x))\), \(x\in {\mathbb{R}}\), where \(Q>0\) is an even \(C^ 1\) function on \({\mathbb{R}}\) such that xQ’(x) increases for \(x>0\) and Q’(x)\(\to \infty\) as \(x\to \infty\). It is in this field, that over the past four years enormous progress (on Freud weights and generalizations) has been made by - in alphabetical order - Bauldry, Bonan, Levin (A. L.), Lubinsky, Magnus (Alphonse), Màté, Mhaskar, Nevai, Rahmanov, Saff, Sheen, Totik and Ullman. The results that are treated in the second part (covering aspects from Christoffel functions, Fourier series, Cesaro and de la Vallée Poussin means via quadrature, Lagrange interpolation to Plancherel-Rotach asymptotics) is a typical example of what happens in leaving the shelter of the compact support: the reader gets, on one hand, the impression that everything changes to quite an extend and, on the other hand, that at least 50 % stays true (albeit in a slightly modified form sometimes). Again the reader must suffer the cold shower of the speed with which a group of prolific mathematicians cranked out results; nevertheless, one gets the impression that it is doubtful whether the author has missed any of the relevant publications up to August 1985! The paper ends with a ”note added in proof” (the writing on the wall) which states that one of Freud’s conjecture on the coefficients in the recurrence relations for the orthogonal polynomials w.r.t. exponential weights has been proved between the submission of the manuscript and the revision 7 months later. There is in my opinion only one dangerous point in this case study under review: the enormous amount of material and the seemingly over increasing speed in which new developments follow, might frighten the novice who wants to enter the field of orthogonal polynomials. One thing is sure: it will not be easy to catch up with the top-specialists, but if one really seriously wants to try, this paper by Nevai sure will be as indispensable as the books on orthogonal polynomials by Freud and Szegö. Reviewer: M.G.de Bruin Cited in 3 ReviewsCited in 211 Documents MSC: 42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis 42-02 Research exposition (monographs, survey articles) pertaining to harmonic analysis on Euclidean spaces 42A20 Convergence and absolute convergence of Fourier and trigonometric series 40G05 Cesàro, Euler, Nörlund and Hausdorff methods 40F05 Absolute and strong summability Keywords:Christoffel functions; Tauberian theorems; convergence of orthogonal Fourier series; strong Cesáro summability; Freud-weights × Cite Format Result Cite Review PDF Full Text: DOI Digital Library of Mathematical Functions: §18.32 OP’s with Respect to Freud Weights ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials References: [1] Aczél, J., Eine Bemerkung über die Charaktereisierung der “klassischen” Orthogonalpolynome, Acta Math. Acad. Sci. Hungar., 4, 315-321 (1953) · Zbl 0051.30401 [2] Agranovich, Z. S.; Marchenko, V. A., The Inverse Problem of Scattering Theory (1963), Gordon & Breach: Gordon & Breach New York · Zbl 0117.06003 [3] Akhiezer, N. I., Orthogonal polynomials on general intervals, Soviet Math. Dokl., 1, 989-992 (1960) · Zbl 0101.29205 [4] Akhiezer, N. I., On the weighted approximation of continuous functions by polynomials on the entire real axis, (Amer. Math. Soc. Transl., Ser. 2, Vol 22 (1962)), 95-137, Providence, R.I. · Zbl 0119.05604 [5] Akhiezer, N. I., Lektures on Approximation Theory (1965), Nauka: Nauka Moscow, [In Russian] [6] Akhiezer, N. I., The Classical Moment Problem (1965), Oliver & Boyd: Oliver & Boyd Edinburgh · Zbl 0135.33803 [7] Akhiezer, N. I., Elements of the Theorey of Elliptic Functions (1970), Nauka: Nauka Moscow, [In Russian] · Zbl 0207.08301 [8] Akhiezer, N. I.; Krein, M. G., Some Questions in the Theory of Moments, (Transl. Math. Monogr., Vol. 2 (1962), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0117.32702 [9] Alexits, G., On almost everywhere convergence and summability of series in orthogonal polynomials, Acta Sci. Math. (Szeged), 12, 223-225 (1950), [In French] · Zbl 0035.33401 [10] Alexits, G., Convergence Problems of Orthogonal Series (1961), Akadémiai Kiadó: Akadémiai Kiadó Budapest · Zbl 0098.27403 [11] Alexits, G.; Králik, D., Über die Approximation in starken Sinne, Acta Sci. Math. (Szeged), 26, 93-101 (1965) · Zbl 0133.02603 [12] Al-Jarrah, R., Error estimates for Gauss-Jacobi quadrature formulae with weights having the whole real line as their support, J. Approx. Theory, 30, 309-314 (1980) · Zbl 0457.41026 [13] Al-Salam, W.; Allaway, Wm; Askey, R., Sieved ultraspherical polynomials, Trans. Amer. Math. Soc., 284, 39-55 (1984) · Zbl 0547.33005 [15] Aptekarev, A. I., Asymptotic properties of polynomials orthogonal on a system of arcs and periodic movements of Toda chains, Mat. Sb., 125, 167, 231-258 (1984) [16] Arestov, V. A., On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat., 45, 3-22 (1981), [In Russian] · Zbl 0538.42001 [17] Askey, R., On some problems posed by Karlin and Szegö concerning orthogonal polynomials, Boll. Un. Mat. Ital., 20, 125-127 (1965) · Zbl 0127.03102 [18] Askey, R., Linearization of the product of orthogonal polynomials, (Gunning, R., Problems in Analysis (1970), Princeton Univ. Press: Princeton Univ. Press Princeton, N.J), 223-228 · Zbl 0212.41001 [19] Askey, R., Proposed problems, (Alexits, G.; etal., Proceedings, Conf. Constructive Th. Functions (1972), Akadémiai Kiadó: Akadémiai Kiadó Budapest), 533 [20] Askey, R., Mean convergence of orthogonal series and Lagrange interpolation, Acta Math. Acad. Sci. Hungar., 23, 71-85 (1972) · Zbl 0253.41003 [21] Askey, R., Summability of Jacobi series, Trans. Amer. Math. Soc., 179, 71-84 (1973) · Zbl 0268.33015 [22] Askey, R., Orthogonal Polynomials and Special Functions, (CBMS-NSF Conference Series, Vol. 21 (1975), Soc. Indust. Appl. Math: Soc. Indust. Appl. Math Philadelphia) · Zbl 0188.12402 [23] Askey, R.; Gaspar, G., Positive Jacobi polynomial sums, II, Amer. J. Math., 98, 709-737 (1976) · Zbl 0355.33005 [24] Askey, R.; Ismail, M., The Rogers \(q\)-ultraspherical polynomials, (Cheney, E. W., Approximation Theory III (1980), Academic Press: Academic Press New York), 175-182 · Zbl 0479.33013 [25] Askey, R.; Ismail, M., A generalization of ultraspherical polynomials, (Erdös, P., Studies in Pure Mathematics (1983), Birkhäuser-Verlag: Birkhäuser-Verlag Basel), 55-78 · Zbl 0532.33006 [26] Askey, R.; Ismail, M., Recurrence Relations, Continued Fractions and Orthogonal Polynomials, (Memoirs Amer. Math. Soc., Vol. 300 (1984), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0548.33001 [28] Askey, R.; Wainger, S., Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math., 87, 695-708 (1965) · Zbl 0125.31301 [29] Askey, R.; Wainger, S., A dual convolution structure for Jacobi polynomials, (Haimo, D., Orthogonal Polynomials and Their Continuous Analogues (1967), Southern Illinois Univ. Press: Southern Illinois Univ. Press Carbondale), 25-36 · Zbl 0174.36305 [30] Askey, R.; Wilson, J., A set of orthogonal polynomials that generalize the Racah coefficients of 6-j symbols, SIAM J. Math. Anal., 10, 1008-1016 (1979) · Zbl 0437.33014 [31] Askey, R.; Wilson, J., Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi Polynomials, (Memoirs Amer. Math. Soc., Vol. 319 (1985), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0572.33012 [32] Skey, R.; Wilson, J., A set of hypergeometric orthogonal poynomials, SIAM J. Math. Anal., 13, 651-655 (1982) · Zbl 0496.33007 [33] Askey, R.; Wimp, J., Associated Laguerre and Hermite polynomials, (Proc. Roy. Soc. Edinburgh Sect. A, 96 (1984)), 15-37 · Zbl 0547.33006 [34] Atkinson, F. V., Discrete and Continuous Boundary Problems (1964), Academic Press: Academic Press New York · Zbl 0117.05806 [35] Avron, J.; Simon, B., Singular continuous spectrum for a class of almost periodic Jacobi matrices, Bull. Amer. Math. Soc. (N.S.), 6, 81-85 (1982) · Zbl 0491.47014 [36] Badkov, V. M., Convergence in the mean and almost everywhere of Fourier series in polynomials orthogonal on an interval, Math. USSR-Sb., 24, 223-256 (1974) · Zbl 0318.42011 [37] Badkov, V. M., Approximation properties of Fourier series in orthogonal polynomials, Russian Math. Surveys, 33, 53-117 (1978) · Zbl 0413.42014 [38] Balázs, J.; Turán, P., Notes on interpolation, VIII, Acta Math. Acad. Sci. Hungar., 12, 469-474 (1961) · Zbl 0100.28304 [39] Bank, E.; Ismail, M., The attractive Coulomb potential polynomials, Constructive Approximation, 1, 103-119 (1985) · Zbl 0584.42016 [40] Bateman Manuscript Project, (Higher Transcendental Functions, Vols. 1-3 (1953), McGraw-Hill: McGraw-Hill New York/Toronto/London), (Director: A. Erdélyi) · Zbl 0051.30303 [41] Bauldry, W. C., Estimates of Christoffel functions of generalized Freud type weights, J. Approx. Theory, 46, 217-229 (1986) · Zbl 0626.42014 [42] Bauldry, W. C., Orthogonal Polynomials Associated with Exponential Weights, (Ph.D. dissertation (1985), Ohio State University: Ohio State University Columbus) [44] Baxter, G., A convergence equivalence related to polynomials orthogonal on the unit circle, Trans. Amer. Math. Soc., 99, 471-487 (1961) · Zbl 0116.35705 [45] Baxter, G., A norm inequality for a finite-section Wiener-Hopf equation, Illinois J. Math., 7, 97-103 (1963) · Zbl 0113.09101 [46] Bernstein, S. N., Sur la meilleure approximation de \(¦x¦\) par des polynomes de degrés donnés dans un segment finit, Acta Math., 37, 1-57 (1913) · JFM 44.0475.01 [47] Bernstein, S. N., Sur la convergence absolue des séries trigonométrique, C.R. Acad. Sci. Paris, 158, 1661-1663 (1914) · JFM 45.0409.01 [48] Bernstein, S. N., Sur les polynômes orthogonaux relatifs à un segment fini, I, J. Math. Pures Appl., 9, 127-177 (1930) · JFM 56.0947.04 [49] Bernstein, S. N., Sur les polynômes orthogonaux relatifs à un segment fini, II, J. Math. Pures Appl., 10, 216-286 (1931) · JFM 57.0413.02 [50] Bernstein, S. N., (Collected Works, Vol. I and II (1952), Publ. House Acad. Sci. USSR: Publ. House Acad. Sci. USSR Moscow) [51] Bessis, D., A new method in the combinatorics of the topological expansion, Comm. Math. Phys., 69, 147-163 (1979) [52] Bessis, D.; Itzykson, C.; Zuber, J. B., Quantum field theory techniques in graphical enumeration, Adv. in Appl. Math., 1, 109-157 (1980) · Zbl 0453.05035 [53] Blumenthal, O., Über die Entwicklung einer willkürlich Funktion nach den Nennern des Kettenbruches für \(∝ [f(ξ)(z-ξ)] dξ\), Dissertation (1898), Göttingen [54] Bohr, H., A general theorem on the integral of a trigonometric polynomial, (Collected Mathematical Works, Vol. II (1952)), 273-288, Copenhagen [55] Bojanic, R.; Freud, G., Weighted polynomial approximation and interpolation in the real line (1977), manuscript [56] Bonan, S. S., Weighted Mean Convergence of Lagrange Interpolation, (Ph.D. dissertation (1982), Ohio State University: Ohio State University Columbus) [57] Bonan, S. S., Applications of G. Freud’s theory, I, (Chui, C. K.; etal., Approximation Theory, IV (1984), Academic Press: Academic Press New York), 347-351 · Zbl 0541.33004 [58] Bonan, S. S.; Clark, D. S., Estimates of orthogonal polynomials with weight exp(−\(x^m), m\) an even positive integer, J. Approx. Theory, 46, 408-410 (1986) · Zbl 0619.33007 [59] Bonan, S. S.; Nevai, P., Orthogonal polynomials and their derivatives, I, J. Approx. Theory, 40, 134-147 (1984) · Zbl 0533.42015 [61] Brezinski, C.; Draux, A.; Magnus, A. P.; Maroni, P.; Ronveaux, A., (Orthogonal Polynomials and Their Applications (Laguerre Symposium). Orthogonal Polynomials and Their Applications (Laguerre Symposium), Lecture Notes in Mathematics (1985), Springer-Verlag: Springer-Verlag Berlin) [62] Bustoz, J.; Ismail, M., The associated ultraspherical polynomials and their \(q\)-analogues, Canad. J. Math., 34, 718-736 (1982) · Zbl 0451.33003 [63] Butzer, P. L.; Fehér, F., E. B. Christoffel (1981), Birkhäuser-Verlag: Birkhäuser-Verlag Basel · Zbl 0468.00002 [64] Carleman, T., A theorem concerning Fourier series, (Proc. London Math. Soc., 21 (1923)), 483-492 · JFM 49.0201.02 [65] Carleman, T., On a theorem of Weierstrass, Ark. Mat. Astronom. Fys. B, 20, 1-5 (1927), [In French] · JFM 53.0237.02 [66] Case, K. M., Scattering theory, orthogonal polynomials, and the transport equation, J. Math. Phys., 15, 974-983 (1974) · Zbl 0293.45004 [67] Case, K. M., Orthogonal polynomials from the viewpoint of scattering theory, J. Math. Phys., 15, 2166-2174 (1974) · Zbl 0288.42009 [68] Case, K. M., Orthogonal polynomials, II, J. Math. Phys., 16, 1435-1440 (1975) · Zbl 0304.42015 [69] Case, K. M., Orthogonal polynomials revisited, (Askey, R. A., Theory and Applications of Special Function (1975), Academic Press: Academic Press New York), 289-304 · Zbl 0326.42003 [70] Case, K. M., Scattering theory and polynomials orthogonal on the unit circle, J. Math. Phys., 20, 299-310 (1979) · Zbl 0439.33014 [71] Charris, J. A., Sieved Pollaczek and Random Walk Polynomials, (Ph.D. dissertation (1984), Arizona State University: Arizona State University Tempe) [74] Chihara, T. S., Chain sequences and orthogonal polynomials, Trans. Amer. Math. Soc., 104, 1-16 (1962) · Zbl 0171.32804 [75] Chihara, T. S., Orthogonal polynomials whose zeros are dense in intervals, J. Math. Anal. Appl., 24, 362-371 (1968) · Zbl 0185.12602 [76] Chihara, T. S., An Introduction to Orthogonal Polynomials (1978), Gordon & Breach: Gordon & Breach New York · Zbl 0389.33008 [77] Chihara, T. S., On generalized Stieltjes-Wiegert and related orthogonal polynomials, J. Comput. Appl. Math., 5, 291-297 (1979) · Zbl 0425.33010 [78] Chihara, T. S., Orthogonal polynomials whose dustribution functions have finit point spectra, SIAM J. Math. Anal., 11, 358-364 (1980) · Zbl 0442.42015 [79] Chihara, T. S., Indeterminate symmetric moment problems, J. Math. Anal. Appl., 85, 331-346 (1982) · Zbl 0485.44004 [80] Chihara, T. S., Spectral properties of orthogonal polynomials on unbounded sets, Trans. Amer. Math. Soc., 270, 623-639 (1982) · Zbl 0489.42024 [81] Chihara, T. S., Orthogonal polynomials with discrete spectra on the real line, J. Approx. Theory, 42, 97-105 (1984) · Zbl 0561.33008 [82] Chihara, T. S.; Nevai, P., Orthogonal polynomials and measures with finitely many point masses, J. Approx. Theory, 35, 370-380 (1982) · Zbl 0512.42024 [84] Császár, A., On the classical orthogonal polynomials, Ann. Univ. Sci. Budapest R. Eötvös Sect. Math., 1, 33-39 (1958), [In French] · Zbl 0091.06001 [85] Czipzer, J.; Freud, G., Sur l’approximation d’une fonction périodique et de ses dérivées successives par un polynome trigonométrique et par ses dérivées successives, Acta Math., 99, 33-51 (1958) · Zbl 0081.06004 [86] de Boor, C.; Golub, G. H., The numerically stable reconstruction of Jacobi matrix from spectral data, Linear Algebra Appl., 21, 245-260 (1978) · Zbl 0388.15010 [87] DeVore, R. A., Freud’s work in constructive function theory, J. Approx. Theory, 46, 32-37 (1986) · Zbl 0596.41001 [88] Ditzian, Z., On interpolation of \(L_p[a, b]\) and weighted Sobolev spaces, Pacific J. Math., 90, 307-323 (1980) · Zbl 0463.46025 [92] Dombrowski, J. M., Spectral properties of phase operators, J. Math. Phys., 15, 576-577 (1974) [93] Dombrowski, J. M., Spectral properties of real parts of weighted shift operators, Indiana Univ. Math. J., 29, 249-259 (1980) · Zbl 0404.47016 [94] Dombrowski, J. M., Tridiagonal matrix representations of cyclic self-adjoint operators, I, Pacific J. Math, 114, 325-334 (1984) · Zbl 0557.47015 [95] Dombrowski, J. M., Tridiagonal matrix representations of cyclic self-adjoint operators, II, Pacific J. Math, 120, 47-53 (1985) · Zbl 0606.47025 [97] Dombrowski, J. M.; Fricke, G. H., The absolute continuity of phase operators, Trans. Amer. Math. Soc., 213, 363-372 (1975) · Zbl 0346.47033 [99] Dzarbasyan, M. M., On weighted best polynomial approximation on the whole real axis, Dokl. Akad. Nauk SSSR, 84, 1123-1126 (1952), [In Russian] · Zbl 0046.06903 [100] Dzarbasyan, M. M.; Tavadyan, A. B., On weighted uniform approximation by polynomials of functions of several variables, Mat. Sb., 43, 85, 227-256 (1957) · Zbl 0129.27601 [101] Elliot, D.; Paget, D. F., The Convergence of Product Integration Rules, BIT, 18, 137-141 (1978) · Zbl 0389.65006 [102] Erdös, P., Problems and results on the convergence and divergence properties of the Lagrange interpolation polynomials and some extremal problems, Mathematica (Cluj), 19, 33, 65-73 (1968) · Zbl 0159.35603 [103] Erdös, P., On the distribution of roots of orthogonal polynomials, (Alexits, G.; etal., Proceedings, Conf. Constructive Th. Functions (1972), Akadémiai Kiadó: Akadémiai Kiadó Budapest), 145-150 · Zbl 0234.33014 [104] Erdös, P.; Feldheim, E., Sur le mode de convergence pour l’interpolation de Lagrange, C.R. Acad. Sci. Paris, 203, 913-915 (1936) · JFM 62.0303.01 [105] Erdös, P.; Freud, G., On polynomials with regularly distributed zeros, (Proc. London Math. Soc. (3), 29 (1974)), 521-537 · Zbl 0294.33006 [106] Erdös, P.; Turán, P., On interpolation, I, Ann. of Math., 38, 142-151 (1937) · JFM 63.0233.03 [107] Erdös, P.; Turán, P., On interpolation, II, Ann. of Math., 39, 703-724 (1938) · JFM 64.0247.01 [108] Erdös, P.; Turán, P., On interpolation, II, Ann. of Math., 41, 510-553 (1940) · JFM 66.0272.01 [109] Erdös, P.; Turán, P., On uniformly dense distribution of certain sequences of points, Ann. of Math., 41, 162-173 (1940) · JFM 66.0347.01 [110] Fejér, L., Lebesguesche Konstanten und divergente Fourierreihen, J. Reine Angew. Math., 139, 22-53 (1910) · JFM 41.0288.01 [111] Feldheim, E., On the orthogonality of the fundamental polynomials of Lagrange interpolation, C. R. Acad. Sci. Paris, 203, 650-652 (1936), [In French] · JFM 62.0302.03 [112] Feldheim, E., Sur le mode de convergence pour l’interpolation de Lagrange, Dokl. Akad. Nauk SSSR, 14, 327-331 (1937) · JFM 63.0234.01 [113] Feldheim, E., Orthogonality of the fundamental polynomials and mean convergence of Lagrange interpolation at the Chebyshev abscissas, Bull. Soc. Math. France, 65, 1-40 (1937), [In French] · Zbl 0017.34706 [114] Feldheim, E., Theory of Convergence of Interpolation Processes and Mechanical Quadratures, Mémorial Sci. Math., Vol. 95 (1939), [In French] · JFM 65.0245.01 [115] Ford, W. R., On the integration of the homogeneous linear difference equation of second order, Trans. Amer. Math. Soc., 10, 319-336 (1909) · JFM 40.0384.02 [116] Freud, G., Restglied eines Tauberschen Satzes, I, Acta Math. Acad. Sci. Hungar., 2, 299-308 (1951) · Zbl 0044.32404 [117] Freud, G., Über die starke \((C, 1)\)-Summierbarkeit von orthogonalen Polynomreihen, Acta Math. Acad. Sci. Hungar., 3, 83-88 (1952) · Zbl 0047.30404 [118] Freud, G., Über die Konvergenz orthogonaler Polynomreihen, Acta Math. Acad. Sci. Hungar., 3, 89-98 (1952) · Zbl 0047.30501 [119] Freud, G., Restglied eines Tauberschen Satzes, II, Acta Math. Acad. Sci. Hungar., 3, 299-307 (1952) · Zbl 0048.29602 [120] Freud, G., Über die absolute Konvergenz von orthogonalen Polynomreihen, Acta Math. Acad. Sci. Hungar., 4, 127-135 (1953) · Zbl 0052.06003 [121] Freud, G., Über die Lebesgueschen Funktionen der Lagrangeschen Interpolation, Acta Math. Acad. Sci. Hungar., 4, 137-142 (1953) · Zbl 0051.04804 [122] Freud, G., Über einen Satz von P. Erdös und P. Turán, Acta Math. Acad. Sci. Hungar., 4, 255-266 (1953) · Zbl 0052.06403 [123] Freud, G., On a Tauberian theorem, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl., 3, 43-53 (1953), [In Hungarian] [124] Freud, G., Über die Konvergenz des Hermite-Fejérschen Interpolationsverfahrens, Acta Math. Acad. Sci. Hungar., 5, 109-128 (1954) · Zbl 0055.05906 [125] Freud, G., Restglied eines Taunerschen Satzes, III, Acta Math. Acad. Sci. Hungar., 5, 275-289 (1954) [126] Freud, G., Über Orthogonale Polynome, Acta Math. Acad. Sci. Hungar., 5, 291-298 (1954) · Zbl 0058.05503 [127] Freud, G., Über das gliedweise Differenzieren einer orthogonalen Polynomreihe, Acta Math. Acad. Sci. Hungar., 6, 221-226 (1955) · Zbl 0064.30205 [128] Freud, G., Über einseitige Approximation durch Polynome, I, Acta Sci. Math. (Szeged), 16, 12-28 (1955) · Zbl 0065.05001 [129] Freud, G., One-sided \(L_1\)-approximations and their application to theorems of Tauberian type, Dokl. Akad. Nauk SSSR, 102, 689-691 (1955), [In Russian] · Zbl 0067.29002 [130] Freud, G., Über differenzierte Folgen del Lagrangeschen Interpolation, Acta Math. Acad. Sci. Hungar., 6, 467-473 (1955) · Zbl 0066.31102 [131] Freud, G., Über die Asymptotik orthogonaler Polynome, Publ. Inst. Math. Acad. Serbe Sci., 11, 19-32 (1957) · Zbl 0081.06001 [132] Freud, G., Eine Bemerkung zur asymptotischen Darstellung von Orthogonalpolynomen, Math. Scand., 5, 285-290 (1957) · Zbl 0081.06002 [133] Freud, G., Bemerkung über die Konvergenz eines Interpolationsverfahrens von P. Turán, Acta Math. Acad. Sci. Hungar., 9, 337-341 (1958) · Zbl 0085.05201 [134] Freud, G., Über die Konvergenz im Mittel von Lagrangeschen Interpolationspolynomfolgen, Acta Math. Acad. Sci. Hungar., 13, 257-268 (1962) · Zbl 0109.28902 [135] Freud, G., Über die \((C, 1)\)-Summen der Entwicklungen nach orthogonalen Polynomen, Acta Math. Acad. Sci. Hungar., 14, 197-208 (1963) · Zbl 0119.05802 [136] Freud, G., Über die Eindeutigkeit der Lösung des Hamburger-Stieltjesschen Momentenproblems, Magyar Tud. Akad. Mal. Kutató Int. Közl., 9, 117-123 (1964) · Zbl 0178.48102 [137] Freud, G., Über die Konvergenz der Orthogonal-Polynomreihe einer Funktion mit beschränkter Variation, Arch. Math. (Brno), 1, 247-250 (1965) · Zbl 0192.16302 [138] Freud, G., Über das Rieszsche Eindeutigkeitskriterium des Momenten-problems, Acta Sci. Math. (Szeged), 27, 77-79 (1966) · Zbl 0178.48103 [139] Freud, G., Über die absolute Konvergenz von Entwicklungen nach Hermiteähnlichen Orthogonalpolynomen, Studia Sci. Math. Hungar., 1, 129-131 (1966) · Zbl 0148.29703 [140] Freud, G., Approximation by interpolating polynomials, Mat. Lapok, 18, 61-64 (1967), [In Hungarian] · Zbl 0165.07401 [141] Freud, G., On convergence of Lagrange interpolation processes on infinite intervals, Mat. Lapok, 18, 289-292 (1967), [In Hungarian] · Zbl 0167.05003 [142] Freud, G., Über die starke Approximation durch differenzierte Folgen von approximierenden Polynomen, Studia Sci. Math. Hungar., 2, 221-226 (1967) · Zbl 0193.02403 [143] Freud, G., Über die Lokalisationseigenschaften und die starke \((C, 1)\)-Summation Lagrangescher Interpolationsverfahren, Publ. Math. (Debrecen), 15, 293-301 (1968) · Zbl 0177.09401 [144] Freud, G., Über starke Approximation mit Hilfe einer Klasse von Interpolationspolynomen, Acta Math. Acad. Sci. Hungar., 19, 201-208 (1968) · Zbl 0193.02404 [145] Freud, G., Über eine Klasse Lagrangescher Interpolationsverfahren, Studia Sci. Math. Hungar., 3, 249-255 (1968) · Zbl 0165.38502 [146] Freud, G., Orthogonale Polynome (1969), Akadémiai Kiado/Birkhäuser-Verlag/Deutscher-Verlag der Wiss: Akadémiai Kiado/Birkhäuser-Verlag/Deutscher-Verlag der Wiss Budapest · Zbl 0169.08002 [147] Freud, G., Orthogonal Polynomials (1971), Akadémiai Kiadó/Pergamon: Akadémiai Kiadó/Pergamon Budapest · Zbl 0226.33014 [148] Freud, G., On weighted polynomial approximation on the whole real axis, Acta Math. Acad. Sci. Hungar., 20, 223-225 (1969) · Zbl 0172.34103 [149] Freud, G., Lagrangesche Interpolation über die Nullstellen der Hermiteschen Orthogonalpolynome, Studia Sci. Math. Hungar., 4, 179-190 (1969) · Zbl 0191.35901 [150] Freud, G., Ein Beitrag zur Theorie des Lagrangeschen Interpolationsverfahrens, Studio Sci. Math. Hungar., 4, 379-384 (1969) · Zbl 0186.11401 [151] Freud, G., On weighted approximation by polynomials on the real axis, Soviet Math. Dokl., 11, 370-371 (1970) · Zbl 0205.08201 [152] Freud, G., On two polynomial inequalities, I, Acta Math. Acad. Sci. Hungar., 22, 109-116 (1971) · Zbl 0219.41003 [153] Freud, G., On an extremum problem for polynomials, Acta Sci. Math. (Szeged), 32, 287-290 (1971) · Zbl 0222.41003 [154] Freud, G., On a class of orthogonal polynomials, Mat. Zametki, 9, 511-520 (1971), [In Russian] · Zbl 0215.13701 [155] Freud, G., On expansions in orthogonal polynomials, Studia Sci. Math. Hungar., 6, 367-374 (1971) · Zbl 0265.42010 [156] Freud, G., On an inequality of Markov type, Soviet Math. Dokl., 12, 570-573 (1971) · Zbl 0221.41008 [157] Freud, G., On approximation with weight \(( exp{−x^22}\) by polynomials, Soviet Math. Dokl., 12, 1837-1840 (1971) · Zbl 0254.41004 [158] Freud, G., On a class of orthogonal polynomials, (Constructive Function Theory Proceedings, Internat. Conf.. Constructive Function Theory Proceedings, Internat. Conf., Varna, 1970 (1972), Publ. House Bulgarian Acad. Sci: Publ. House Bulgarian Acad. Sci Sofia), 177-182 · Zbl 0235.33012 [159] Freud, G., A contribution to the problem of weighted polynomial approximation, (Butzer, P. L.; etal., Linear Operators and Approximation. Linear Operators and Approximation, ISNM, Vol. 20 (1972), Birkhäuser-Verlag: Birkhäuser-Verlag Basel), 431-447 · Zbl 0259.41004 [160] Freud, G., On two polynomial inequalities, II, Acta Math. Acad. Sci. Hungar., 23, 137-145 (1972) · Zbl 0263.26013 [161] Freud, G., On Hermite-Fejér interpolation sequences, Acta Math. Acad. Sci. Hungar., 23, 175-178 (1972) · Zbl 0256.41002 [162] Freud, G., On Hermite-Fejér interpolation processes, Studia Sci. Math. Hungar., 1, 307-316 (1972) · Zbl 0299.41001 [163] Freud, G., On weighted simultaneous polynomial approximation, Studia Sci. Math. Hungar., 7, 337-342 (1972) · Zbl 0272.41003 [164] Freud, G., On direct and converse theorems in the theory of weighted polynomial approximation, Math. Z., 126, 123-134 (1972) · Zbl 0222.41004 [165] Freud, G., On the greatest zero of an orthogonal polynomial, I, Acta Sci. Math. (Szeged), 34, 91-97 (1973) · Zbl 0262.33014 [166] Freud, G., On weighted \(L_1\)-approximation by polynomials, Studia Math., 46, 125-133 (1973) · Zbl 0254.41003 [167] Freud, G., Investigations on weighted approximation by polynomials, Studia Sci. Math. Hungar., 8, 285-305 (1973) · Zbl 0291.41005 [168] Freud, G., On polynomial approximation with the weight \(exp{−x^{2k}2}\), Acta Math. Acad. Sci. Hungar., 24, 363-371 (1973) · Zbl 0269.41004 [169] Freud, G., On the converse theorems of weighted polynomial approximation, Acta Math. Acad. Sci. Hungar., 24, 389-397 (1973) · Zbl 0269.41005 [170] Freud, G., On polynomial approximation with respect to general weights, (Garnir, H. G.; etal., Functional Analysis and Its Applications. Functional Analysis and Its Applications, Lecture Notes in Mathematics, Vol. 399 (1973), Springer-Verlag: Springer-Verlag Berlin), 149-179 · Zbl 0295.41001 [171] Freud, G., Error estimates for Gauss-Jacobi quadrature formulae, (Miller, J. J.H, Topics in Numerical Analysis (1973), Academic Press: Academic Press London/New York), 113-121 · Zbl 0285.65019 [172] Freud, G., On estimations of the greatest zeros of orthogonal polynomials, Acta Math. Acad. Sci. Hungar., 25, 99-107 (1974) · Zbl 0276.42006 [173] Freud, G., Extension of the Dirichlet-Jordan criterion to a general class of orthogonal polynomial expansions, Acta Math. Acad. Sci. Hungar., 25, 109-122 (1974) · Zbl 0287.42015 [174] Freud, G., On the theory of one sided weighted \(L_1\)-approximation by polynomials, (Butzer, P. L.; etal., Linear Operators and Approximation, II. Linear Operators and Approximation, II, ISNM, Vol. 25 (1974), Birkhäuser-Verlag: Birkhäuser-Verlag Basel), 285-303 · Zbl 0291.41005 [175] Freud, G., On the greatest zero of an orthogonal polynomial, II, Acta Sci. Math. (Szeged), 36, 49-54 (1974) · Zbl 0285.33012 [176] Freud, G., An estimate of the error of Padé approximants, Acta Math. Acad. Sci. Hungar., 25, 213-221 (1974) · Zbl 0285.41011 [177] Freud, G., Numerical estimates for the error of Gauss-Jacobi quadrature formulae, (Miller, J. J.H, Topics in Numerical Analysis, II (1975), Academic Press: Academic Press London/New York), 43-50 · Zbl 0339.65014 [178] Freud, G., On the extension of the Fejér-Lebesgue theorem to orthogonal polynomial series, (Mathematical Structures. Mathematical Structures, Collection of Papers Dedicated to L. Iliev, Sofia (1975)), 257-265 [179] Freud, G., Error estimates for Gauss-Jacobi quadrature formulae and their applications, Alkalmaz. Mat. Lapok, 1, 23-36 (1975), [In Hungarian] · Zbl 0363.65016 [180] Freud, G., On a class of sets introduced by P. Erdös, (Infinite and Finite Sets Colloq.. Infinite and Finite Sets Colloq., Keszthely, 1973. Infinite and Finite Sets Colloq.. Infinite and Finite Sets Colloq., Keszthely, 1973, Colloq. Math. Soc. Bolyai, Vol. 11 and 10 (1975), North-Holland: North-Holland Amsterdam), 701-710 · Zbl 0309.31003 [181] Freud, G., On the coefficients in the recursion formulae of orthogonal polynomials, (Proc. Roy. Irish Acad. Sect. A (I), 76 (1976)), 1-6 · Zbl 0327.33008 [182] Freud, G., Markov-Bernstein type inequalities in \(L_p(−∞,∞)\), (Lorentz, G. G.; etal., Approximation Theory, II (1976), Academic Press: Academic Press New York), 369-377 · Zbl 0349.41002 [183] Freud, G., Weighted polynomial approximation and \(K\)-functionals, (Law, A. G.; etal., Theory of Approximation, with Applications (1976), Academic Press: Academic Press New York), 9-23 · Zbl 0351.41003 [184] Freud, G., On the zeros of orthogonal polynomials with respect to measures with noncompact support, Anal. Numér. Théor. Approx., 6, 125-131 (1977) · Zbl 0383.33008 [185] Freud, G., On Markov-Bernstein-type inequalities and their applications, J. Approx. Theory, 19, 22-37 (1977) · Zbl 0356.41003 [186] Freud, G., On uniform boundedness of orthonormal polynomial sequences, (Nederl. Akad. Wetensch. Proc. Ser. A, 81 (1978)), 436-444 · Zbl 0409.33012 [187] Freud, G., On the greatest zero of an orthogonal polynomial, J. Approx. Theory, 46, 16-24 (1986) · Zbl 0603.42022 [188] Freud, G., Approximation by Hermite-Fejér interpolation (1977), manuscript [189] Freud, G.; Ganelius, T., Some remarks on one-sided approximation, Math. Scand., 5, 276-284 (1957) · Zbl 0084.06103 [190] Freud, G.; Giroux, A.; Rahman, Q. I., Sur l’approximation polynomiale sur tout l’axe reel, Canad. J. Math., 28, 961-967 (1976) · Zbl 0362.41004 [191] Freud, G.; Giroux, A.; Rahman, Q. I., Sur l’approximation polynomiale aves poids \(exp{−¦x¦}\), Canad. J. Math., 30, 358-372 (1978) · Zbl 0409.41002 [192] Freud, G.; Liu, C. D., On mixed Lagrange and Hermite-Fejér interpolation (1977), manuscript [193] Freud, G.; Mhaskar, H. N., Weighted polynomial approximation in rearrangement invariant Banach function spaces on the whole real line, Indian J. Math., 22, 3, 209-224 (1980) · Zbl 0516.41004 [194] Freud, G.; Mhaskar, H. N., \(k\)-Functionals and moduli of continuity in weighted polynomial approximation, Ark. Mat., 21, 145-161 (1983) [195] Freud, G.; Németh, G., On the \(L_p\)-norms of orthonormal Hermite functions, Studia Sci. Math. Hungar., 8, 399-404 (1973) · Zbl 0289.33024 [196] Freud, G.; Nevai, P., Über einseitige Approximation durch Polynome, III, Acta. Sci. Math. (Szeged), 35, 65-72 (1973) · Zbl 0246.41011 [197] Freud, G.; Nevai, P., Weighted \(L_1\) and one-sided weighted \(L_1\) polynomial approximation on the real line, Magyar Tud. Akad. III. Oszt. Közl., 21, 485-502 (1973), [In Hungarian] · Zbl 0269.41007 [198] Freud, G.; Sharma, A., Some good sequences of interpolatory polynomials, Canad. J. Math., 26, 233-246 (1974) · Zbl 0287.41003 [199] Freud, G.; Sharma, A., Some good sequences of interpolatory polynomials: Addendum, Canad. J. Math, 29, 1163-1166 (1977) · Zbl 0367.41003 [200] Freud, G.; Szabados, J., Remark on a theorem of H. Bohr, Mat. Lapok, 21, 253-257 (1970) · Zbl 0252.41004 [201] Freud, G.; Szabados, J., Über einseitige Approximation durch Polynome, II, Acta Sci. Math. (Szeged), 31, 59-67 (1970) · Zbl 0197.34702 [202] Freud, G.; Vértesi, P., Some examples of a new error estimate of Gauss-Jacobi quadrature formulae based on the Chebyshev roots, Ann. Univ. Sci. Budapest Sect. Comput., 1, 65-80 (1978) · Zbl 0498.65008 [203] Gagaev, B. M., On the uniqueness of a system or orthogonal functions invariant with respect to differentiation, C.R. Acad. Sci. Paris, 188, 222-225 (1929), [In French] · JFM 55.0166.01 [204] Gagaev, B. M., On some classes of orthogonal functions, Izv. Akad. Nauk SSSR, 10, 197-206 (1946), [In Russian] · Zbl 0060.17108 [205] Gagaev, B. M., On Luzin’s generalized problem, Izv. Vuz. Mat., 3, 16, 101-103 (1960), [In Russian] · Zbl 0122.31301 [206] Ganelius, T., On the remainder in a Tauberian theorem, Kungl. Fysiogr. Sällsk. i Lund Förh, 24, No. 20 (1954) · Zbl 0057.09204 [207] Ganelius, T., Tauberian Remainder Theorems, (Lecture Notes in Mathematics, Vol. 232 (1972), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0109.33303 [208] Ganelius, T., Géza Freud’s work on Tauberian remainder theorems, J. Approx. Theory, 46, 42-50 (1986) · Zbl 0588.40008 [209] Gautschi, W., Computational aspects of three-term recurrence relations, SIAM Rev., 9, 24-82 (1967) · Zbl 0168.15004 [210] Gautschi, W., Polynomials orthogonal with respect to the reciprocal gamma function, BIT, 22, 387-389 (1982) · Zbl 0484.65011 [211] Gautschi, W., On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput., 3, 289-317 (1982) · Zbl 0482.65011 [212] Gautschi, W., How and how not to check Gaussian quadrature formulae, BIT, 23, 209-216 (1983) · Zbl 0518.65007 [213] Gautschi, W., The condition of Vandermonde-like matrices involving orthogonal polynomials, Linear Algebra Appl., 52/53, 293-300 (1983) · Zbl 0522.33005 [214] Gautschi, W., On some orthogonal polynomials of interest in theoretical chemistry, BIT, 24, 473-483 (1984) · Zbl 0547.65008 [215] Gautschi, W.; Milanovic, G. V., Polynomials orthogonal on the semicircle, J. Approx. Theory, 46, 230-250 (1986) · Zbl 0604.42024 [217] Geronimo, J. S., Szegö’s theorem on Hankel determinants, J. Math. Phys., 20, 484-491 (1979) · Zbl 0432.33008 [218] Geronimo, J. S., A relation between the coefficients in the recurrence formula and the spectral function for orthogonal polynomials, Trans. Amer. Math. Soc., 260, 65-82 (1980) · Zbl 0445.42002 [219] Geronimo, J. S., Matrix orthogonal polynomials on the unit circle, J. Math. Phys., 22, 1359-1365 (1981) · Zbl 0505.42019 [220] Geronimo, J. S., Scattering theory and matrix orthogonal polynomials on the real line, Circuits Systems Signal Process, 1, 471-495 (1982) · Zbl 0506.15010 [221] Geronimo, J. S., An upper bound on the number of eigenvalues of an infinite-dimensional Jacobi matrix, J. Math. Phys., 23, 917-921 (1982) · Zbl 0492.42016 [224] Geronimo, J. S.; Case, K. M., Scattering theory and polynomials orthogonal on the unit circle, J. Math. Phys., 20, 299-320 (1979) · Zbl 0439.33014 [225] Geronimo, J. S.; Case, K. M., Scattering theory and polynomials orthogonal on the real line, Trans. Amer. Math. Soc., 258, 467-494 (1980) · Zbl 0436.42018 [226] Geronimo, J. S.; Nevai, P., Necessary and sufficient conditions relating the coefficients in the recurrence formula to the spectral function for orthogonal polynomials, SIAM J. Math. Anal., 14, 622-637 (1983) · Zbl 0517.42031 [227] Geronimo, J. S.; Van Assche, W., Orthogonal polynomials with asymptotically periodic recurrence coefficients, J. Approx. Theory, 46, 251-283 (1986) · Zbl 0604.42023 [228] Geronimus, Ya. L., On orthogonal polynomials with respect to numerical sequences and Hahn’s theorems, Izv. Akad. Nauk SSSR, 4, 215-228 (1940), [In Russian] [229] Geronimus, Ya. L., Orthogonal Polynomials (1961), Consultants Bureau: Consultants Bureau New York · Zbl 0093.26503 [230] Geronimus, Ya. L., Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Transl., 3, 1-78 (1962) · Zbl 0146.08903 [231] Geronimus, Ya. L., On asymptotic properties of polynomials which are orthogonal on the unit circle, and on certain properties of positive harmonic functions, Amer. Math. Soc. Transl., 3, 79-106 (1962) [232] Geronimus, Ya. L., Some asymptotic properties of orthogonal polynomials, Soviet Math. Dokl., 165, 1387-1389 (1965) · Zbl 0151.08301 [233] Geronimus, Ya. L., Some asymptotic properties of orthogonal polynomials, Vestnik Khar’kov. Gos. Univ., 32, 40-50 (1966) · Zbl 0154.06105 [234] Geronimus, Ya. L., Szegö’s limit relation and properties of related orthogonal polynomials, Izv. Akad. Nauk SSSR, 37, 1186-1199 (1973) · Zbl 0309.42007 [235] Geronimus, Ya. L., On a problem of S. N. Bernstein, Soviet Math. Dokl., 17, 1051-1054 (1976) · Zbl 0351.42020 [236] Geronimus, Ya. L., Orthogonal polynomials, Amer. Math. Soc. Transl., 108, 37-130 (1977) · Zbl 0373.42007 [237] Geronimus, Ya. L., Estimates for orthogonal polynomials and Stekloffs conjecture, Soviet Math. Dokl., 18, 1176-1179 (1977) · Zbl 0409.33010 [238] Goh, W., Asymptotic expansions for Pollaczek polynomials (1978), Ohio State University, manuscript [239] Golinskii, B. L., On Steklov’s problem in the theory of orthogonal polynomials, Mat. Zametki, 15, 21-32 (1974), [In Russian] · Zbl 0302.42014 [240] Golinskii, B. L., The asymptotic representation at a point of the derivatives of orthogonal poynomials, Math. Notes, 19, 497-504 (1976) [241] Golinskii, B. L., Asymptotic representations of orthogonal polynomials, Uspekhi Mat. Nauk, 35, 145-196 (1980), [In Russian] · Zbl 0449.42021 [242] Golinski, B. L.; Ibragimov, I. A., On Szegö’s limit theorem, Math. USSR-Izv., 5, 421-446 (1971) · Zbl 0249.42012 [243] Goncar, A. A.; Rahmanov, E. A., On convergence of simultaneous Padé approximants for systems of functions of Markov type, (Proc. Steklov Inst. Math., 3 (1983)), 31-50 · Zbl 0518.41011 [244] Goncar, A. A.; Rahmanov, E. A., Equilibrium measure and distribution of zeros of extremal polynomials, Mat. Sb., 125, 167, 117-127 (1984) [245] Gotlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods, (CBMS-NSF Conference Series, No. 26 (1977), Soc. Indust. Appl. Math: Soc. Indust. Appl. Math Philadelphia) · Zbl 0412.65058 [246] Görlich, E.; Markett, C., On a relation between the norms of Césaro means of Jacobi expansions, (Butzer, P. L.; etal., Linear Spaces and Approximation (1978), Birkhäuser-Verlag: Birkhäuser-Verlag Basel), 251-262 · Zbl 0384.42014 [248] Grenander, U.; Rosenblatt, M., An extension of a theorem of G. Szegö and its application to the study of stochastic processes, Trans. Amer. Math. Soc., 76, 112-126 (1954) · Zbl 0059.11804 [249] Grenander, U.; Szegö, G., Toeplitz Forms and Their Applications (1958), Univ. of California Press: Univ. of California Press Berkeley/Los Angeles · Zbl 0080.09501 [250] Guseinov, G. S., The determination of an infinite Jacobi matrix from the scattering data, Soviet Math. Dokl., 17, 596-600 (1976) · Zbl 0336.47021 [251] Haar, A., Reihenentwicklungen nach Legendreschen Polynomen, Math. Ann., 78, 121-136 (1917) · JFM 46.0571.01 [252] hahn, W., Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Math., 39, 634-638 (1935) · JFM 61.0377.01 [253] Hardy, G. H.; Littlewood, J. E., Sur la série de Fourier d’une fonction à carré sommable, C.R. Acad. Sci. Paris, 156, 1307-1309 (1913) · JFM 44.0302.03 [255] Hirschman, I. I., The strong Szegö limit theorem for Toeplitz determinants, Amer. J. Math., 88, 577-614 (1966) · Zbl 0173.42602 [256] Hodges, C. H., Von Hove singularities an continued fraction coefficients, J. Physique Lett., 38, 187-189 (1977) [257] Holló, A., On Mechanical Quadrature, Thesis, 1-33 (1939), [In Hungarian] [258] Hörmander, L., A new proof and a generalization of an inequality of Bohr, Math. Scand., 2, 33-45 (1954) · Zbl 0056.30801 [259] Hörup, C., An asymptotic formula for the derivatives of orthogonal polynomials on the unit circle, Math. Scand., 20, 32-40 (1967) · Zbl 0181.34902 [260] Ismail, M. E.H, On solving differential and difference equations with variable coefficients, J. Math. Anal. Appl., 62, 81-89 (1978) · Zbl 0369.34005 [261] Ismail, M. E.H, On solving certain differential equations with variable coefficients, Aequationes Math., 17, 148-153 (1978) · Zbl 0379.34010 [262] Ismail, M. E.H, On sieved orthogonal polynomials. I. Symmetric Pollaczek analogues, SIAM J. Math. Anal., 16, 1093-1113 (1985) · Zbl 0576.33005 [264] Ismail, M. E.H, On sieved orthogonal polynomials. IV. Generating functions, J. Approx. Theory, 46, 284-296 (1986) · Zbl 0645.33017 [266] Ismail, M. E.H; Wilson, J. A., Asymptotic relations for the \(q\)-Jacobi and \(_4π_3\) polynomials, J. Approx. Theory, 36, 43-54 (1982) · Zbl 0489.33011 [267] Jackson, D., The Theory of Approximation, (Amer. Math. Soc. Colloq. Publ., Vol. 11 (1930), Amer. Math. Soc: Amer. Math. Soc New York) · JFM 56.0936.01 [268] Karamata, J., Über die Hardy-Littlewoodsche Umkehrung des Abelschen Stetigkeitssatzes, Math. Z., 32, 519-520 (1930) [269] Karklin, S.; Szegö, G., On certain determinants whose elements are orthogonal polynomials, J. Analyse Math., 8, 1-157 (1960) · Zbl 0116.27901 [270] Kis, O., Lagrange interpolation at the zeros of the Sonin-Markoff polynomials, Acta Math. Acad. Sci. Hungar., 23, 389-417 (1972) · Zbl 0254.41001 [271] Knopfmacher, A., Positive convergent approximation operators associated with orthogonal polynomials for weights on the whole real line, J. Approx. Theory, 46, 182-203 (1986) · Zbl 0604.41025 [274] Kolmogorov, A. N., Stationary sequences in Hilbert spaces, Bull. Moscow State Univ., 2, No. 6, 1-40 (1941), [In Russian] · Zbl 0063.03291 [275] Koornwinder, T., The addition formula for Jacobi polynomials. I. Summary of results, Indag. Math., 34, 188-191 (1972) · Zbl 0247.33017 [276] Koornwinder, T., The addition formula for Jacobi polynomials and spherical harmonics, SIAM J. Appl. Math., 25, 236-246 (1973) · Zbl 0276.33023 [277] Korevaar, J., An estimate of the error in Tauberian theorems for power series, Duke Math. J., 18, 731-733 (1951) [278] Korous, J., Über Reihenentwicklungen nach verallgemeinerten Laguerreschen Polynomen mit drei Parametern, Vestnik Královské Ceské Spolecnosti Nauk, Trida Mat.-Prirodoved, 26 (1937) · JFM 63.0956.02 [279] Korous, J., Über Entwicklungen der Funktionen einer reellen Veränderlichen in Reihen einer gewissen Klasse orthogonaler Polynome im unendlichen Intervalle, Vestnik Královské Ceské Spolecnosti Nauk, Trida Mat.-Prirodoved, 19 (1937) · JFM 63.0957.01 [280] Korous, J., On expansion of functions of one real variable in series of certain orthogonal polynomials, Rozprawy Ceské Akad., 48, 12 (1938), [In Czech] · JFM 65.1215.01 [281] Korovkin, P. P., Capacity of sets and polynomials which minimize integrals, Kaliningrad. Gos Ped. Inst. Učen. Zap., 5, 34-52 (1958), [In Russian] [282] Korovkin, P. P., Asymptotic representation of polynomials which minimize integrals, (Smirnov, V. I., Investigation on Contemporary Problems of Constructive Function Theory (1961), Goz. Izd. Fiz.-Mat. Lit: Goz. Izd. Fiz.-Mat. Lit Moscow), 273-276, [In Russian] [283] Krall, H. L., On derivatives of orthogonal polynomials, Bull. Amer. Math. Soc., 42, 423-428 (1936) · Zbl 0014.39903 [284] Krall, H. L., On higher derivatives of orthogonal polynomials, Bull. Amer. Math. Soc., 42, 867-870 (1936) · Zbl 0016.01905 [285] Krein, M. G., Generalization of investigations of G. Szegö, V. I. Smirnov and A. N. Kolmogorov, Dokl. Akad. Nauk SSSR, 46, 91-94 (1945), [In Russian] · Zbl 0063.03355 [286] Krein, M. G., A special class of entire and meromorphic functions, (Ahiezer, N. I.; Krein, M. G., Some Questions in the Theory of Moments. Some Questions in the Theory of Moments, Transl. Math. Monographs, Vol. 2 (1962), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0956.30015 [287] Kuetz, M., A note on the mean convergence of Lagrange interpolation, J. Approx. Theory, 35, 77-82 (1982) · Zbl 0485.41001 [288] Kutepov, V. A., Remarks on interpolation on unbounded sets, Izv. Vyssh. Uchebn. Zaved Mat, 226, 78-80 (1981) · Zbl 0468.41002 [289] Ky, N. X., On Jackson and Bernstein type approximation theorems in the case of approximation by algebraic polynomials in \(L_p\) spaces, Studia Sci. Math. Hungar., 9, 405-415 (1974) · Zbl 0331.41004 [290] (Oeuvres de Laguerre, Vol II (1972), Chelsea: Chelsea New York), 685-711 · JFM 17.0304.01 [291] Landau, H. J., On Szegö’s eigenvalue distribution theorem and non-Hermitian kernels, J. Analyse Math., 28, 335-357 (1975) · Zbl 0321.45005 [292] Landau, H. J.; Widom, H., Eigenvalue distribution of time and frequency limiting, J. Math. Anal. Appl., 77, 469-481 (1980) · Zbl 0471.47029 [293] Lee, S. Y., The inhomogeneous Airy functions Gi(z) and Hi(z), J. Chem. Phys., 72, 332-336 (1980) [296] Lew, J. S.; Quarles, D. A., Nonnegative solutions of a nonlinear recurrence, J. Approx. Theory, 38, 357-379 (1983) · Zbl 0518.42029 [297] Littlewood, J. E., The converse of Abel’s theorem on power series, (Proc. London Math. Soc., 9 (1910)), 434-448 · JFM 42.0276.01 [299] Lagomasino, G. López, On the asymptotics of the ratio of orthogonal polynomials and convergence of multi-point Padé approximations, Mat. Sb., 128, 170, 216-229 (1985) [301] Lorentz, G. G., Some Developments in Approximation and Interpolation in the Last 20 Years (1982), Department of Mathematics, University of Texas: Department of Mathematics, University of Texas Austin [302] Lorentz, G. G.; Jetter, K.; Riemenschneider, S. D., Birkhoff Interpolation, (Encyclopedia of Mathematics and Its Applications, Vol. 19 (1983), Addison-Wesley: Addison-Wesley Reading, Mass) · Zbl 1159.41001 [303] Lubinsky, D. S., Geometric convergence of Lagrangian interpolation and numerical integration over unbounded contours and intervals, J. Approx. Theory, 39, 338-360 (1983) · Zbl 0544.41003 [304] Lubinsky, D. S., A weighted polynomial inequality, (Proc. Amer. Math. Soc., 92 (1984)), 263-267 · Zbl 0518.41009 [305] Lubinsky, D. S., Gaussian quadrature, weights on the whole real line, and even entire functions with nonnegative even order derivatives, J. Approx. Theory, 46, 297-313 (1986) · Zbl 0608.41017 [306] Lubinsky, D. S., Estimates of Freud-Christoffel functions for some weights with the whole real line as support, J. Approx. Theory, 44, 343-379 (1985) · Zbl 0584.42015 [307] Lubinsky, D. S., On Nevai’s bounds for orthogonal polynomials associated with exponential weights, J. Approx. Theory, 44, 86-91 (1985) · Zbl 0605.42020 [310] Lubinsky, D. S.; Rabinowitz, P., Rates of convergence of Gaussian quadrature for singular integrands, Math. Comp., 43, 219-242 (1984) · Zbl 0574.41028 [311] Lubinsky, D. S.; Sharif, A., On the largest zeros of orthogonal polynomials for certain weights, Math. Comp., 41, 199-202 (1983) · Zbl 0521.33007 [312] Lubinsky, D. S.; Sidi, A., Convergence of linear and nonlinear Padé approximants from series of orthogonal polynomials, Trans. Amer. Math. Soc., 278, 333-345 (1983) · Zbl 0518.30037 [314] Luzin, N. N., Integral and trigonometric series, (Collected Works of N. N. Luzin, Vol. 1 (1953), Acad. Sci. USSR: Acad. Sci. USSR Moscow), 48-212 [315] Maejima, M.; Van Assche, W., Probabilistic proofs of asymptotic formulas for some classical polynomials, (Math. Proc. Cambridge Philos. Soc., 97 (1985)), 499-510 · Zbl 0557.33006 [316] Magnus, Al, Recursive coefficients for orthogonal polynomials on connected and nonconnected sets, (Werner, H.; Bünger, H. J., Padé Approximation and Its Applications. Padé Approximation and Its Applications, Lecture Notes in Mathematics, Vol. 765 (1979), Springer-Verlag: Springer-Verlag New York), 150-171 · Zbl 0431.41021 [317] Magnus, Al, Recurrence coefficients in case of Anderson localization, (van Rossum, H.; de Bruin, M. G., Rational Approximation, Theory and Applications. Rational Approximation, Theory and Applications, Lecture Notes in Mathematics (1981), Springer-Verlag: Springer-Verlag Berlin), VIII-1-VIII-5 [318] Magnus, Al, Riccati acceleration of Jacobi continued fractions and Laguerre-Hahn orthogonal polynomials, (Werner, H.; Bünger, H. J., Padé Approximation and Its Applications. Padé Approximation and Its Applications, Lecture Notes in Mathematics, Vol. 1071 (1984), Springer-Verlag: Springer-Verlag Berlin), 213-230 · Zbl 0539.40003 [319] Magnus, Al, A proof of Freud’s conjecture about orthogonal polynomials related to \(¦x¦^p exp(−x^{2m})\), (Brezinski, C.; etal., Orthogonal Polynomials and Their Applications. Orthogonal Polynomials and Their Applications, Lecture Notes in Mathematics (1985), Springer-Verlag: Springer-Verlag Berlin), 362-372 · Zbl 0606.42019 [321] Magnus, Al, On Freud’s equations for exponential weights, J. Approx. Theory, 46, 65-99 (1986) · Zbl 0619.42015 [322] Maki, D. P., On determining regular behaviour from the recurrence formula for orthogonal polynomials, Pacific J. Math., 91, 173-178 (1980) · Zbl 0469.42004 [323] Marcinkiewicz, J., Sur l’interpolation, I, Studia Math., 6, 1-17 (1936) · Zbl 0016.01901 [324] Markett, C., Cohen type inequalities for Jacobi, Laguerre and Hermite expansions, SIAM J. Math. Anal., 14, 819-833 (1983) · Zbl 0542.42015 [325] Markett, C., Nikolskii-type inequalities for Laguerre and Hermite expansions, (Szabados, J., Functions, Series, Operators Proceedings, Conf.. Functions, Series, Operators Proceedings, Conf., Budapest 1980 (1984), North-Holland: North-Holland Amsterdam), 811-834 · Zbl 0536.41019 [326] Markett, C., The Lebesgue constants for Fourier-Bessel series, mean convergence, and the order of singularity of a Sturm-Liouville equation, J. Math. Anal. Appl., 103, 497-523 (1984) · Zbl 0591.33006 [327] Markov, A. A., Differenzenrechnung (1896), Leipzig · Zbl 0152.08001 [328] Máté, A.; Nevai, P., Bernstein’s inequality in \(L_p\) for \(0 < p < 1\) and \((C, 1)\) bounds for orthogonal polynomials, Ann. of Math., 111, 145-154 (1980) · Zbl 0397.42001 [329] Máté, A.; Nevai, P., Remarks on E. A. Rahmanov’s paper “On the Asymptotics of the Ratio of Orthogonal Polynomials,”, J. Approx. Theory, 36, 64-72 (1982) · Zbl 0509.30029 [330] Máté, A.; Nevai, P., Orthogonal polynomials and absolutely continuous measures, (Chui, C. K.; Schumaker, L. L.; Ward, J. D., Approximation Theory, IV (1983), Academic Press: Academic Press New York), 611-617 · Zbl 0541.43001 [331] Maté, A.; Nevai, P., Sublinear perturbations of the differential equation \(y^{(n)} = 0\) and of the analogous difference equation, J. Differential Equations, 53, 234-257 (1984) · Zbl 0489.34035 [332] Máté, A.; Nevai, P., Asymptotics for solutions of smooth recurrence equations, (Proc. Amer. Math. Soc., 93 (1985)), 423-429 · Zbl 0574.42017 [333] Máté, A.; Nevai, P.; Totik, V., What is beyond Szegö’s theory of orthogonal polynomials?, (Graves-Morris, P. R.; Saff, E. B.; Varga, R. S., Rational Approximation and Interpolation. Rational Approximation and Interpolation, Lecture Notes in Mathematics, Vol. 1105 (1984), Springer-Verlag: Springer-Verlag New York), 502-510 · Zbl 0564.42012 [334] Máté, A.; Nevai, P.; Totik, V., Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle, Constructive Approximation, 1, 63-69 (1985) · Zbl 0582.42012 [336] Máté, A.; Nevai, P.; Totik, V., Asymptotics for orthogonal polynomials defined by a recurrence relation, Constructive Approximation, 1, 231-248 (1985) · Zbl 0585.42023 [337] Máté, A.; Nevai, P.; Totik, V., Mean Cesàro summability of orthogonal polynomials, (Sendov, B.; etal., Constructive Theory of Functions (1984), Publ. House Bulgarian Acad. Sci: Publ. House Bulgarian Acad. Sci Sofia), 588-599 · Zbl 0598.42021 [338] Máté, A.; Nevai, P.; Totik, V., Necessary conditions for weighted mean convergence of Fourier series in orthogonal polynomials, J. Approx. Theory, 46, 314-322 (1986) · Zbl 0605.42023 [344] Máté, A.; Nevai, P.; Zaslavsky, T., Asymptotic expansion of ratios of coefficients of orthogonal polynomials with exponential weights, Trans. Amer. Math. Soc., 287, 495-505 (1985) · Zbl 0536.42023 [345] Meixner, J., The meaning of Christoffel’s sum formula for expansions in orthogonal polynomials, (Butzer, P. L.; Feher, F., E. B. Christoffel (1981), Birkhäuser-Verlag: Birkhäuser-Verlag Basel), 160-171, [In German] [346] Mhaskar, H. N., Weighted analogues of Nikolskii-type inequalities and their applications, (Conference in Honor of A. Zygmund, Vol. II (1983), Wadsworth: Wadsworth Belmont, Calif), 783-801 · Zbl 0512.42001 [348] Mhaskar, H. N., Extensions of the Dirichlet-Jordan criterion to a general class of orthogonal polynomial expansions, J. Approx. Theory, 42, 138-148 (1984) · Zbl 0545.42020 [349] Mhaskar, H. N., Weighted polynomial approximation, J. Approx. Theory, 46, 100-110 (1986) · Zbl 0602.41004 [350] Mhaskar, H. N.; Saff, E. B., Extremal problems for polynomials with Laguerre weights, (Chui, C. K.; Schumaker, L. L.; Ward, J. D., Approximation Theory, IV (1983), Academic Press: Academic Press New York), 619-624 · Zbl 0574.41014 [351] Mhaskar, H. N.; Saff, E. B., Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc., 285, 203-234 (1984) · Zbl 0546.41014 [352] Mhaskar, H. N.; Saff, E. B., Weighted polynomials on finite and infinite intervals: A unified approach, Bull. Amer. Math. Soc. (N.S.), 11, 351-354 (1984) · Zbl 0565.41017 [353] Mhaskar, H. N.; Saff, E. B., Polynomials with Laguerre weights in \(L_p\), (Graves-Morris, P. R.; Saff, E. B.; Varga, R. S., Rational Approximation and Interpolation. Rational Approximation and Interpolation, Lecture Notes in Math., Vol. 1105 (1984), Springer-Verlag: Springer-Verlag New York), 510-523 · Zbl 0565.41018 [354] Mhaskar, H. N.; Saff, E. B., Where does the sup norm of a Weighted polynomial live?, Constructive Approximation, 1, 71-91 (1985) · Zbl 0582.41009 [355] Milne, W. E., On the degree of convergence of expansions in an infinite interval, Trans. Amer. Math. Soc., 31, 422-443 (1929) · JFM 55.0168.01 [356] Milne, W. E., On the maximum absolute value of the derivative of exp(−\(x^2)P_n(x)\), Trans. Amer. Math. Soc., 33, 143-146 (1931) · Zbl 0001.13305 [357] Mityagin, B. S., Absolute convergence of the series of Fourier coefficients, Soviet Math. Dokl., 5, 1083-1086 (1964) · Zbl 0141.25504 [358] Montgomery, H., The analytic principle of the large sieve, Bull. Amer. Math. Soc., 84, 547-567 (1976) · Zbl 0408.10033 [359] Muckenhoupt, B., Mean convergence of Jacobi series, (Proc. Amer. Math. Soc., 24 (1970)), 306-310 · Zbl 0182.39701 [360] Muckenhoupt, B., Mean convergence of Hermite and Laguerre series, I, Trans. Amer. Math. Soc., 147, 419-431 (1970) · Zbl 0191.07602 [361] Muckenhoupt, B., Mean convergence of Hermite and Laguerre series, II, Trans. Amer. Math. Soc., 147, 433-460 (1970) · Zbl 0191.07602 [362] Naîman, P. B., The set of isolated points of increase of the spectral function of a limit-constant Jacobi matrix, Izv. Vyssh. Uchebn. Zaved. Mat., 1, 129-135 (1959) · Zbl 0112.07101 [363] Natanson, I. P., (Constructive Function Theory, Vols. I-III (1964), Ungar: Ungar New York) · Zbl 0133.31101 [364] Nevai, P., Lagrange interpolation based on the zeros of Laguerre polynomials, Mat. Lapok, 22, 149-164 (1971), [In Hungarian] · Zbl 0247.41002 [365] Nevai, P., Hermite-Fejér interpolation process based on the zeros of Hermite polynomials, Acta Math. Acad. Sci. Hungar., 23, 247-253 (1972), [In Russian] · Zbl 0246.41006 [366] Nevai, P., One-sided approximation by polynomials with applications, Acta Math. Acad. Sci. Hungar., 23, 496-506 (1972), [In German] · Zbl 0256.41004 [367] Nevai, P., Lagrange interpolation on the real line, Mat. Lapok, 23, 143-146 (1972), [In Hungarian] · Zbl 0275.41001 [368] Nevai, P., Fourier series and interpolation. I. Fourier series and trigonometric Lagrange interpolation, Mat. Lapok, 23, 261-290 (1972), [In Hungarian] · Zbl 0288.42003 [369] Nevai, P., Fourier series and interpolation. II. Polynomial Lagrange interpolation, Mat. Lapok, 24, 49-61 (1973), [In Hungarian] · Zbl 0348.41008 [370] Nevai, P., One-sided approximation by polynomials in (0, ∞), Period. Math. Hungar., 4, 147-156 (1973), [In German] · Zbl 0286.41007 [371] Nevai, P., On an inequality of G. Freud, Ann. Univ. Sci. Budapest Eötvös Sect. Math., 16, 87-92 (1973), [In Russian] · Zbl 0296.41001 [372] Nevai, P., Some properties of orthogonal polynomials corresponding to the weight \((1 + x^{2k)α}\) exp(−\(x^{2k})\) and their application in approximation theory, Soviet Math. Dokl., 14, 1116-1119 (1973) · Zbl 0288.42008 [373] Nevai, P., Lagrange interpolation based on the zeros of Hermite polynomials, Acta Math. Acad. Sci. Hungar., 24, 209-213 (1973), [In Russian] · Zbl 0256.41003 [374] Nevai, P., Orthogonal polynomials on the real line associated with the weight \(¦x¦^α exp(−¦x¦^β)\), I\), Acta Math. Acad. Sci. Hungar., 24, 335-342 (1973), [In Russian] · Zbl 0293.33010 [375] Nevai, P., On the Dini-Lipschitz convergence test, Acta Math. Acad. Sci. Hungar., 24, 349-351 (1973), [In Russian] · Zbl 0269.42009 [376] Nevai, P., On Convergence of Lagrange interpolation based on Laguerre nodes, Publ. Math. Debrecen, 20, 235-239 (1973), [In Russian] · Zbl 0273.41001 [377] Nevai, P., Notes on interpolation, Acta Math. Acad. Sci. Hungar., 25, 123-144 (1974), [In Russian] · Zbl 0286.41002 [378] Nevai, P., Localization theorems for convergence of Lagrange interpolation based on the zeros of Hermite polynomials, Acta Math. Acad. Sci. Hungar., 25, 341-361 (1974), [In Russian] · Zbl 0296.41002 [379] Nevai, P., Mean convergence of Lagrange interpolation, J. Approx. Theory, 18, 363-377 (1976) · Zbl 0426.41001 [380] Nevai, P., Lagrange interpolation at zeros of orthogonal polynomials, (Lorentz, G. G.; Chui, C. K.; Schumaker, L. L., Approximation Theory, II (1976), Academis Press: Academis Press New York), 163-201 · Zbl 0343.41002 [381] Nevai, P., Orthogonal polynomials, (Lorentz, G. G., Problems in Approximation Theory. Problems in Approximation Theory, University of Arkansas, Lectures Notes on Mathematics (1977), University of Arkansas: University of Arkansas Fayetteville), 65-77 · Zbl 0411.41001 [382] Nevai, P., Orthogonal Polynomials, (Memoirs Amer. Math. Soc., Vol. 213 (1979), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0789.42016 [383] Nevai, P., On an extremal problem, (Proc. Amer. Math. Soc., 74 (1979)), 301-306 · Zbl 0411.42008 [384] Nevai, P., Bernstein’s inequality in \(L^p\) for \(0 < p < 1\), J. Approx. Theory, 27, 239-243 (1979) · Zbl 0432.41009 [385] Nevai, P., On orthogonal polynomials, J. Approx. Theory, 25, 34-37 (1979) · Zbl 0419.33005 [386] Nevai, P., An asymptotic formula for the derivatives of orthogonal polynomials, SIAM J. Math. Anal., 10, 472-477 (1979) · Zbl 0416.42013 [387] Nevai, P., Distribution of zeros of orthogonal polynomials, Trans. Amer. Math. Soc., 249, 341-361 (1979) · Zbl 0413.42016 [388] Nevai, P., Orthogonal polynomials defined by a recurrence relation, Trans. Amer. Math. Soc., 250, 369-384 (1979) · Zbl 0413.42015 [389] Nevai, P., Mean convergence of Lagrange interpolation, II, J. Approx. Theory, 30, 263-276 (1980) · Zbl 0469.41004 [390] Nevai, P., Eigenvalue distribution of Toeplitz matrices, (Proc. Amer. Math. Soc., 80 (1980)), 247-253 · Zbl 0438.42016 [391] Nevai, P., Convergence of summability of orthogonal series, (Cheney, E. W., Approximation Theory, III (1980), Academic Press: Academic Press New York), 679-685 · Zbl 0516.42037 [392] Nevai, P., Orthogonal polynomials associated with exp(−\(x^4)\), (Second Edmonton Conference on Approximation Theory. Second Edmonton Conference on Approximation Theory, Canadian Math. Soc. Conference Proceedings, Vol. 3 (1983)), 263-285 · Zbl 0561.42013 [393] Nevai, P., Mean convergence of Lagrange interpolation, III, Trans. Amer. Math. Soc., 282, 669-698 (1984) · Zbl 0577.41001 [394] Nevai, P., Asymptotics for orthogonal polynomials associated with exp(−\(x^4)\), SIAM J. Math. Anal., 15, 1177-1187 (1984) · Zbl 0566.42016 [395] Nevai, P., A new class of orthogonal polynomials, (Proc. Amer. Math. Soc., 91 (1984)), 409-415 · Zbl 0572.42019 [396] Nevai, P., Two of my favorite ways of obtaining asymptotics for orthogonal polynomials, (Butzer, P. L.; Stens, R. L.; Sz.-Nagy, B., Functional Analysis and Approximation. Functional Analysis and Approximation, ISNM 65 (1984), Birkhäuser-Verlag: Birkhäuser-Verlag Basel), 417-436 · Zbl 0628.33009 [397] Nevai, P., Solution of Turán’s problem on divergence of Lagrange interpolation in \(L^p\) with \(p > 2\), J. Approx. Theory, 43, 190-193 (1985) · Zbl 0562.41003 [398] Nevai, P., Exact bounds for orthogonal polynomials associated with exponential weights, J. Approx. Theory, 44, 82-85 (1985) · Zbl 0605.42019 [399] Nevai, P., Orthogonal polynomials on infinite intervals, (Rend. Sem. Mat. Univ. Politec. Torino, Fasc. Spec. (1985)), 215-236 · Zbl 0604.42022 [400] Nevai, P., Extensions of Szegö’s theory of orthogonal polynomials, (Brezinski, C.; etal., Orthogonal Polynomials and Their Applications. Orthogonal Polynomials and Their Applications, Lecture Notes in Mathematics, Vol. 1171 (1985), Springer-Verlag: Springer-Verlag Berlin), 230-238 · Zbl 0591.42016 [401] Nevai, P., Letter to a friend, J. Approx. Theory, 46, 5-8 (1986) [403] Nevai, P.; Dehesa, J. S., On asymptotic average properties of zeros of orthogonal polynomials, SIAM J. Math. Anal., 10, 1184-1192 (1979) · Zbl 0434.33010 [407] Nevai, P.; Vértesi, P., Hermite-Fejér interpolation at zeros of generalized Jacobi polynomials, (Chui, C. K.; Schumaker, L. L.; Ward, J. D., Approximation Theory, IV (1983), Academic Press: Academic Press New York), 629-633 · Zbl 0577.41003 [408] Nevai, P.; Vértesi, P., Mean convergence of Hermite-Fejér interpolation, J. Math. Anal. Appl., 105, 26-58 (1985) · Zbl 0567.41002 [409] Nevai, P.; Walter, G. G., Series of orthogonal polynomials as boundary values, SIAM J. Math. Anal., 12, 502-513 (1981) · Zbl 0469.33009 [410] Newman, J.; Rudin, W., Mean convergence of orthogonal series, (Proc. Amer. Math. Soc., 3 (1952)), 219-222 · Zbl 0046.29402 [411] Nikolskii, S. M., Inequalities for entire function of finite order and their application in the theory of differentiate functions of several variables, (Proc. Steklov Inst. Math., 38 (1951)), 244-278 · Zbl 0049.32301 [412] Novikoff, A., On a Special System of Orthogonal Polynomials, (Doctoral dissertation (1954), Stanford University) · Zbl 0116.34103 [413] Nuttall, J., Asymptotics of diagonal Hermite-Padé polynomials, J. Approx. Theory, 42, 299-386 (1984) · Zbl 0565.41015 [416] Nuttall, J.; Singh, S. R., Orthogonal polynomials and Padé approximants associated with a system of arcs, J. Approx. Theory, 21, 1-42 (1977) · Zbl 0355.30004 [417] Olver, F. W.J, Asymptotics and Special Functions (1974), Academic Press: Academic Press New York · Zbl 0303.41035 [418] O’Reilly, E. P.; Weaire, D., On the asymptotic form of the recursion method basis vectors for periodic Hamiltonians, J. Phys. A, 17, 2389-2397 (1984) · Zbl 1188.82075 [419] Osilenker, B. P., On Fourier-Pollaczek series, Soviet Math. Dokl., 26, 153-156 (1982) · Zbl 0519.42021 [420] Plancherel, M.; Rotach, W., Sur les valeurs asymptotiques des polynomes d’Hermite \(Hn(x) = (−1)^n exp(x^22) d^n\) exp(−\(x^22)/dx^n\), Comment. Math. Helv., 1, 227-254 (1929) · JFM 55.0799.02 [421] Poincaré, H., On linear ordinary differential and difference equations, Amer. J. Math., 7, 203-258 (1885), [In French] · JFM 17.0290.01 [422] Pollaczek, F., Sur une généralisation des polynomes de Legendre, C.R. Acad. Sci. Paris, 228, 1363-1365 (1949) · Zbl 0041.03502 [423] Pollaczek, F., On a four parameter family of orthogonal polynomials, C.R. Acad. Sci. Paris, 230, 2254-2256 (1950), [In French] · Zbl 0038.22403 [424] Pollaczek, F., Sur une généralization des polynómes de Jacobi, Mémorial des Sciences Mathématiques, Vol. 131 (1956), Paris [425] Pollard, H., The mean convergence of orthogonal series of polynomials, (Proc. Nat. Acad. Sci. U.S.A., 32 (1946)), 8-10 · Zbl 0060.17005 [426] Pollard, H., The mean convergence of orthogonal series of poynomials, II, Trans. Amer. Math. Soc., 63, 355-367 (1948) · Zbl 0032.40601 [427] Pollard, H., The mean convergence of orthogonal series of polynomials, III, Duke Math. J., 16, 189-191 (1949) · Zbl 0035.04101 [428] Pólya, G.; Szegö, G., (Problems and Theorems in Analysis, Vol. I and II (1976), Springer-Verlag: Springer-Verlag New York) · Zbl 0338.00001 [429] Postnikov, A. G., The remainder term in Hardy and Littlewood’s Tauberian theorem, Dokl. Akad. Nauk SSSR, 77, 193-196 (1951), [In Russian] · Zbl 0042.06802 [430] Postnikov, A. G., A Tauberian theorem for Dirichlet series, Dokl. Akad. Nauk SSSR, 92, 487-490 (1953), [In Russian] · Zbl 0053.04402 [431] Postnikov, A. G., (Proc. Steklov Inst. Math., 2 (1980)), 1-138, English transl.: · Zbl 0433.40004 [432] Povcun, L. P., Divergence of Lagrange interpolation based on the zeros of Laguerre poynomials, Math. Notes, 21, 443-448 (1977) · Zbl 0365.41002 [433] Povcun, L. P., On divergence of interpolation processes at a fixed point, Izv. Vyssh. Uchebn. Zaved. Mat., 3, 190, 56-60 (1978) · Zbl 0393.41002 [434] Povcun, L. P., Fourier-Laguerre series and Lagrange interpolation polynomials, Izv. Vyssh. Uchebn. Zaved. Mat., 10, 221, 80-83 (1980) · Zbl 0458.42019 [435] Rafal’son, S. Z., On an asymptotic formula for orthogonal polynomials, Soviet Math. Dokl., 7, 1561-1564 (1966) · Zbl 0203.07101 [436] Rahmanov, E. A., On the asymptotics of the ratio of orthogonal polynomials, Math. USSR-Sb., 32, 199-213 (1977) · Zbl 0401.30033 [437] Rahmanov, E. A., Convergence of diagonal Padé approximants, Math. USSR-Sb., 33, 243-260 (1977) · Zbl 0398.30032 [438] Rahmanov, E. A., On Stekloffs conjecture in the theory of orthogonal polynomials, Mat. Sb., 108, 150, 581-608 (1979) [439] Rahmanov, E. A., On the asymptotics of the ratio of orthogonal polynomials, II, Math. USSR-Sb., 46, 105-117 (1983) · Zbl 0515.30030 [440] Rahmanov, E. A., On asymptotic properties of polynomials orthogonal on the real axis, Soviet Math. Dokl., 24, 505-507 (1981) · Zbl 0498.30048 [441] Rahmanov, E. A., On asymptotic properties of polynomials orthogonal on the real axis, Math. USSR-Sb., 47, 155-193 (1984) · Zbl 0522.42018 [442] Ronveaux, A., Orthogonal polynomials whose derivatives are quasiorthogonal, C.R. Acad. Sci. Paris Sér. A, 289, 433-436 (1979), [In French] · Zbl 0431.33006 [443] Ronveaux, A., Discrete semi-classical orthogonal polynomials, J. Approx. Theory, 46, 403-407 (1986) · Zbl 0591.42015 [444] Safe, E. B., Incomplete and orthogonal polynomials, (Chui, C. K.; etal., Approximation Theory, IV (1983), Academic Press: Academic Press New York), 219-256 · Zbl 0563.41006 [445] Saff, E. B.; Varga, R. S., On incomplete polynomials, II, Pacific J. Math., 92, 161-172 (1981) · Zbl 0424.41004 [446] Safe, E. B.; Varga, R. S., On lacunary incomplete polynomials, Math. Z., 177, 297-314 (1981) · Zbl 0438.42011 [447] Sansone, G., Orthogonal Functions (1959), Interscience: Interscience New York · Zbl 0084.06106 [448] Sheen, R. C., Orthogonal Polynomials Associated with \(exp(−x^66)\), (Ph.D. dissertation (1984), Ohio State University: Ohio State University Columbus) [450] Shohat, J. A., On the asymptotic expressions for Jacobi and Legrendre polynomials derived from finite-difference equations, Amer. Math. Monthly, 33, 354-361 (1926) · JFM 52.0352.03 [451] Shohat, J. A., Mechanical quadratures and zeros of Chebyshev polynomials in infinite intervals, C.R. Acad. Sci. Paris, 185, 597-598 (1927), [In French] · JFM 53.0335.01 [452] Shohat, J. A., On a wide class of algebraic continued fractions and the corresponding Chebyshev polynomials, C.R. Acad. Sci. Paris, 191, 989-990 (1930), [In French] · JFM 56.0946.01 [453] Shohat, J. A., Théorie générale des polynómes orthogonaux de Tchebichef, Mémorial des Sciences Mathématiques, Vol. 66 (1934), Paris · JFM 60.1037.01 [454] Shohat, J. A., Development of Stieltjes transforms in continued fractions and Chebyshev polynomials, Rend. Circ. Mat. Palermo (2), 47, 25-46 (1937) [455] Shohat, J. A., On the convergence properties of Lagrange interpolation based on the zeros of orthogonal Tchebycheff polynomials, Ann. of Math. (2), 38, 758-769 (1937) · Zbl 0018.11901 [456] Shohat, J. A., A differential equation for orthogonal polynomials, Duke Math. J., 5, 401-417 (1939) · JFM 65.0285.03 [457] Shohat, J. A., Applications of orthogonal Tchebycheff polynomials to Lagrangean interpolation and to the general theory of polynomials, Ann. Mat. Pura Appl., 18, 201-238 (1939) · Zbl 0023.02303 [458] Shohat, J. A.; Tamarkin, J. D., The Problem of Moments, (Math. Surveys Monogr. No. 1 (1970), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0112.06902 [459] Sudan, I. H., On the numerical evaluation of singular integrals, BIT, 18, 91-102 (1978) · Zbl 0386.65002 [460] Sloan, I. H., Non-polynomial interpolation, J. Approx. Theory, 39, 97-117 (1983) · Zbl 0519.41002 [461] Sloan, I. H.; Burn, B. J., Collocation with polynomials for integral equations of the second kind: a new approach to the theory, J. Integral Equations, 1, 77-94 (1979) · Zbl 0445.65110 [462] Sloan, I. H.; Smith, W. E., Product-integration with the Clenshaw-Curtis and related points, Numer. Math., 30, 415-428 (1978) · Zbl 0367.41015 [463] Sloan, I. H.; Smith, W. E., Properties of interpolatory product integration rules, SIAM J. Numer. Anal., 19, 427-442 (1982) · Zbl 0491.41002 [464] Smirnov, V. I., Sur les formules de Cauchy et de Green et quelques problèmes qui s’y ratachent, Izv. Akad. Nauk SSSR, 337-372 (1932) · JFM 58.1076.02 [465] Smirnov, V. I.; Lebedev, N. A., Functions of a Complex Variable, Constructive Theory (1968), MIT Press: MIT Press Cambridge, Mass · Zbl 0164.37503 [466] Smith, W. E.; Sloan, I. H., Product-integration rules based on the zeros of Jacobi polynomials, SIAM J. Numer. Anal., 17, 1-13 (1980) · Zbl 0429.41023 [467] Smith, W. E.; Sloan, I. H.; Opie, A. H., Product integration over infinite intervals. I. Rules based on the zeros of Hermite polynomials, Math. Comp., 40, 519-535 (1983) · Zbl 0542.65013 [468] Stanton, D., Orthogonal polynomials and Chevalley groups, (Askey, R. A.; etal., Functions: Group Theoretical Aspects and Applications (1984), Reidel: Reidel Dordrecht), 87-128 · Zbl 0578.20041 [469] Suetin, P. K., V.A. Stekloffs problem in the theory of orthogonal polynomials, Itogi Nauki i Tehniki Mat. Anal. (Moscow), 15, 5-82 (1977) · Zbl 0427.42008 [470] Szegö, G., On certain special sets of orthogonal polynomials, (Proc. Amer. Math. Soc., 1 (1950)), 731-737 · Zbl 0041.39202 [471] Szegö, G., Orthogonal Polynomials, (Amer. Math. Soc. Colloq. Publ., Vol. 23 (1975), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · JFM 65.0278.03 [472] Szegö, G., Orthogonal Polynomials (1962), GIFML: GIFML Moscow, [In Russian] · JFM 65.0278.03 [473] Szegö, G., (Askey, R., Collected Papers, Vols. I-III (1982), Birkhäuser-Verlag: Birkhäuser-Verlag Boston) [474] Sz.-Nagy, B., Über die Konvergenz von Reihen orthogonaler Polynome, Math. Nachr., 4, 50-55 (1951) · Zbl 0042.07301 [475] Sz.-Nagy, B.; Strausz, A., On a Bohr-type inequality, MTA Mat. Term. Tud. Értesitöje, 57, 121-135 (1938), [In Hungarian] · JFM 64.1046.01 [476] Tandori, K., Über die Cesàrosche Summierbarkeit der orthogonalen polynomreihe, I, Acta Math. Acad. Sci. Hungar., 3, 73-82 (1952) · Zbl 0047.30403 [477] Tandori, K., Über die Cesàrosche Summierbarkeit der orthogonalen Polynomreihe, II, Acta Math. Acad. Sci. Hungar., 5, 236-253 (1954) · Zbl 0059.05303 [478] Thompson, D. J., Spectrum estimation and harmonic analysis, (Proc. IEEE, 70 (1982)), 1055-1096 [479] Timan, A. F., Theory of Approximation of Functions of a Real Variable (1963), Pergamon/Macmillan Co: Pergamon/Macmillan Co New York · Zbl 0117.29001 [480] Turán, P., On the zeros of the polynomials of Legendre, Câsopis Pêst. Mat. a Fys., 75, 113-122 (1950) · Zbl 0040.32303 [481] Turán, P., On some problems in the theory of mechanical quadrature, Mathematica (Cluj), 8, 41, 182-192 (1966) · Zbl 0171.31102 [482] Turán, P., On orthogonal polynomials, Anal. Math., 1, 297-311 (1975) · Zbl 0331.42006 [483] Turán, P., On some open problems of approximation theory, J. Approx. Theory, 29, 23-85 (1980) · Zbl 0454.41001 [484] Ullman, J. L., On weighted Tchebycheff polynomials, (Haimo, D., Orthogonal Expansions and Their Continuous Analogues (1968), Southern Ilinois Univ. Press: Southern Ilinois Univ. Press Carbondale), 51-53 · Zbl 0183.11301 [485] Ullman, J. L., On the regular behavior of orthogonal polynomials, (Proc. London Math. Soc. (3), 24 (1972)), 119-148 · Zbl 0232.33007 [486] Ullman, J. L., Orthogonal polynomials for general measures, (Mathematical Structures. Mathematical Structures, Collection of Papers Dedicated to Iliev, Sofia (1975)), 493-496 [487] Ullman, J. L., Orthogonal polynomials associated with an infinite interval, Michigan Math. J., 27, 353-363 (1980) · Zbl 0455.33004 [488] Ullman, J. L., On orthogonal polynomials associated with an infinite interval, (Cheney, E. W., Aproximation Theory III (1980), Academic Press: Academic Press New York), 889-895 · Zbl 0455.33004 [489] Ullman, J. L., A survey of exterior asymptotics for orthogonal polynomials associated with a finite interval and a study of the case of the general weight measures, (Proceedings, N.A.T.O. Advanced Study Inst. on Approximation Theory (1983)) · Zbl 0572.42020 [490] Ullman, J. L., Orthogonal polynomials for general measures, I, (Graves-Morris, P. R.; Saff, E. B.; Varga, R. S., Rational Approximation and Interpolation. Rational Approximation and Interpolation, Lecture Notes in Mathematics, Vol. 1105 (1984), Springer-Verlag: Springer-Verlag New York), 524-528 · Zbl 0564.42011 [493] Ullman, J. L.; Wyneken, M. F.; Ziegler, L., Norm oscillatory weight measures, J. Approx. Theory, 46, 204-212 (1986) · Zbl 0614.42010 [494] Uspensky, J. V., On the convergence of quadrature formulas related to an infinite interval, Trans. Amer. Math. Soc., 26, 542-559 (1928) · JFM 54.0280.02 [495] Van Assche, W., Asymptotic properties of orthogonal polynomials form their recurrence formula, I, J. Approx. Theory, 44, 258-276 (1985) · Zbl 0583.42011 [496] Van Assche, W., Weighted zero distribution for polynomials orthogonal on an infinite interval, SIAM J. Math. Anal., 16, 1317-1334 (1985) · Zbl 0593.33010 [497] Van Assche, W.; Teugels, J. L., Second order asymptotic behaviour of the zeros of orthogonal polynomials, Rev. Roumaine Math. Pures Appl., 32 (1987) · Zbl 0626.33008 [498] Van Doorn, E. A., On oscillation properties and the interval of orthogonality of orthogonal polynomials, SIAM J. Math. Anal., 15, 1031-1042 (1984) · Zbl 0551.42009 [499] Van Rossum, H., Systems of orthogonal and quasi-orthogonal polynomials connected with the Padé table, I, (Nederl. Akad. Wetensch. Proc. Ser. A, 58 (1955)), 517-525 · Zbl 0067.29301 [500] Van Rossum, H., Systems of orthogonal and quasi-orthogonal polynomials connected with the Padé table, II, (Nederl. Akad. Wetensch. Proc. Ser. A, 58 (1955)), 526-534 · Zbl 0067.29301 [501] Van Rossum, H., Systems of orthogonal and quasi-orthogonal polynomials connected with the Padé table, III, (Nederl. Akad. Wetensch. Proc. Ser. A, 58 (1955)), 675-682 · Zbl 0067.29301 [502] Vértesi, P., Hermite-Fejér interpolations, IV, Acta Math. Acad. Sci. Hungar., 39, 83-93 (1982) · Zbl 0525.41005 [503] Walsh, J. L., Interpolation and Approximation by Rational Functions in the Complex Domain, (Amer. Math. Soc. Colloq. Publ., Vol. 20 (1960), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0013.05903 [504] Whitley, R., Markov and Bernstein’s inequalities, and compact and strictly singular operators, J. Approx. Theory, 34, 277-285 (1982) · Zbl 0487.41015 [505] Widom, H., Extremal polynomials associated with a system of curves in the complex plane, Adv. in Math., 3, 127-232 (1969) · Zbl 0183.07503 [506] Widom, H., The strong Szegö limit theorem for circular arcs, Indiana Univ. Math. J., 21, 277-283 (1971) · Zbl 0213.34903 [507] Widom, H., Asymptotic behavior of block Toeplitz matrices and determinants, Adv. in Math., 13, 284-322 (1974) · Zbl 0281.47018 [508] Widom, H., On the limit of block Toeplitz determinants, (Proc. Amer. Math. Soc., 50 (1975)), 167-173 · Zbl 0312.47027 [509] Widom, H., Asymptotic behavior of block Toeplitz matrices and determinants, II, Adv. in Math., 21, 1-29 (1974) · Zbl 0344.47016 [510] Widom, H., Szegö’s limit theorem: The higher dimensional matrix case, J. Funct. Anal., 39, 182-198 (1980) · Zbl 0465.47034 [511] Wilf, H. S., Finite Sections of Some Classical Inequalities (1970), Springer-Verlag: Springer-Verlag New York · Zbl 0199.38301 [512] Wilson, J. A., Hypergeometric Series, Recurrence Relations and Some New Orthogonal Functions, (Ph.D. dissertation (1978), University of Wisconsin: University of Wisconsin Madison) [513] Wilson, J. A., Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal., 11, 690-701 (1980) · Zbl 0454.33007 [514] Wing, G. M., The mean convergence of orthogonal series, Amer. J. Math., 72, 792-808 (1950) · Zbl 0045.33801 [515] Zalik, R. A., Inequalities for weighted polynomials, J. Approx. Theory, 37, 137-146 (1983) · Zbl 0508.41012 [516] Zayed, A. I., Laguerre series as boundary values, SIAM J. Math. Anal., 13, 263-279 (1982) · Zbl 0483.30025 [517] Zayed, A. I.; Walter, G. G., Series of orthogonal polynomials as hyper-functions, SIAM J. Math. Anal., 13, 664-675 (1982) · Zbl 0497.33013 [518] Ziegler, L. R., Norm and Zero Asymptotics for Extremal Polynomials, (Ph.D. dissertation (1977), University of Michigan: University of Michigan Ann Arbor) [519] Zygmund, A., (Trigonometric Series, Vol. 1 (1977), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0367.42001 [520] Zygmund, A., (Trigonometric Series, Vol. 2 (1977), Cambridge Univ. Press: Cambridge Univ. Press Cambridge) · Zbl 0367.42001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.