Gover, A. Rod; Peterson, Lawrence J.; Sleigh, Callum A conformally invariant Yang-Mills type energy and equation on 6-manifolds. (English) Zbl 1534.53030 Commun. Contemp. Math. 26, No. 2, Article ID 2250078, 27 p. (2024). Reviewer: Iakovos Androulidakis (Athína) MSC: 53C07 53C18 58E15 70S15 81T13 PDFBibTeX XMLCite \textit{A. R. Gover} et al., Commun. Contemp. Math. 26, No. 2, Article ID 2250078, 27 p. (2024; Zbl 1534.53030) Full Text: DOI arXiv
Garcia, Alexis Single-valued Killing fields of a meromorphic affine connection and classification. (English) Zbl 1525.53022 SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 052, 35 p. (2023). Reviewer: Benjamin McKay (Cork) MSC: 53B05 53A40 PDFBibTeX XMLCite \textit{A. Garcia}, SIGMA, Symmetry Integrability Geom. Methods Appl. 19, Paper 052, 35 p. (2023; Zbl 1525.53022) Full Text: DOI arXiv
Mustafa, Khawlah A. The groups of two by two matrices in double and dual numbers, and associated Möbius transformations. (English) Zbl 1447.20021 Adv. Appl. Clifford Algebr. 28, No. 5, Paper No. 92, 25 p. (2018). MSC: 20G99 30C10 PDFBibTeX XMLCite \textit{K. A. Mustafa}, Adv. Appl. Clifford Algebr. 28, No. 5, Paper No. 92, 25 p. (2018; Zbl 1447.20021) Full Text: DOI arXiv
Jedrzejewski, Franck Deleuze and Riemannian geometry: a topological multiplicity. (Deleuze et la géométrie riemannienne: une topologie des multiplicités.) (French. Extended English abstract) Zbl 1391.01022 Ji, Lizhen (ed.) et al., From Riemann to differential geometry and relativity. Cham: Springer (ISBN 978-3-319-60038-3/hbk; 978-3-319-60039-0/ebook). 311-328 (2017). Reviewer: Robert W. van der Waall (Amsterdam) MSC: 01A60 55-01 03A05 00A30 PDFBibTeX XMLCite \textit{F. Jedrzejewski}, in: From Riemann to differential geometry and relativity. Cham: Springer. 311--328 (2017; Zbl 1391.01022) Full Text: DOI
Bolsinov, A. V. Argument shift method and sectional operators: applications to differential geometry. (English. Russian original) Zbl 1373.53019 J. Math. Sci., New York 225, No. 4, 536-554 (2017); translation from Fundam. Prikl. Mat. 20, No. 3, 5-31 (2015). MSC: 53B10 53B20 53B30 17B80 37J35 PDFBibTeX XMLCite \textit{A. V. Bolsinov}, J. Math. Sci., New York 225, No. 4, 536--554 (2017; Zbl 1373.53019); translation from Fundam. Prikl. Mat. 20, No. 3, 5--31 (2015) Full Text: DOI arXiv Link
Kouneiher, Joseph; Barbachoux, Cécile Cartan’s soldered spaces and conservation laws in physics. (English) Zbl 1327.81186 Int. J. Geom. Methods Mod. Phys. 12, No. 9, Article ID 1550089, 20 p. (2015). MSC: 81Q05 53C35 57S20 83C05 70S15 22E70 PDFBibTeX XMLCite \textit{J. Kouneiher} and \textit{C. Barbachoux}, Int. J. Geom. Methods Mod. Phys. 12, No. 9, Article ID 1550089, 20 p. (2015; Zbl 1327.81186) Full Text: DOI
Benayadi, Saïd; Boucetta, Mohamed Special bi-invariant linear connections on Lie groups and finite dimensional Poisson structures. (English) Zbl 1393.17037 Differ. Geom. Appl. 36, 66-89 (2014). MSC: 17B63 17D25 53C05 PDFBibTeX XMLCite \textit{S. Benayadi} and \textit{M. Boucetta}, Differ. Geom. Appl. 36, 66--89 (2014; Zbl 1393.17037) Full Text: DOI arXiv
Krömer, Ralf The set of paths in a space and its algebraic structure. A historical account. (English. French summary) Zbl 1382.01006 Ann. Fac. Sci. Toulouse, Math. (6) 22, No. 5, 915-968 (2013). Reviewer: Christopher Hollings (Oxford) MSC: 01A60 55-03 PDFBibTeX XMLCite \textit{R. Krömer}, Ann. Fac. Sci. Toulouse, Math. (6) 22, No. 5, 915--968 (2013; Zbl 1382.01006) Full Text: DOI Link
Schwachhöfer, Lorenz J. Holonomy groups and algebras. (English) Zbl 1254.53082 Bär, Christian (ed.) et al., Global differential geometry. Berlin: Springer (ISBN 978-3-642-22841-4/hbk; 978-3-642-22842-1/ebook). Springer Proceedings in Mathematics 17, 3-37 (2012). Reviewer: Anna Fino (Torino) MSC: 53C29 53C05 PDFBibTeX XMLCite \textit{L. J. Schwachhöfer}, Springer Proc. Math. 17, 3--37 (2012; Zbl 1254.53082) Full Text: DOI Link
Boubel, Charles On the holonomy of Lorentzian metrics. (English) Zbl 1213.53063 Ann. Fac. Sci. Toulouse, Math. (6) 16, No. 3, 427-475 (2007). MSC: 53C29 53C50 PDFBibTeX XMLCite \textit{C. Boubel}, Ann. Fac. Sci. Toulouse, Math. (6) 16, No. 3, 427--475 (2007; Zbl 1213.53063) Full Text: DOI EuDML
Schwachhöfer, Lorenz J. Connections with irreducible holonomy representations. (English) Zbl 1037.53035 Adv. Math. 160, No. 1, 1-80 (2001). Reviewer: Iskander A. Taimanov (Novosibirsk) MSC: 53C29 53C05 53C28 53C17 17B10 PDFBibTeX XMLCite \textit{L. J. Schwachhöfer}, Adv. Math. 160, No. 1, 1--80 (2001; Zbl 1037.53035) Full Text: DOI Link
Chi, Quo-Shin Degenerate torsion-free \(G_3\)-connections. (English) Zbl 0937.53017 Int. J. Math. 9, No. 8, 945-955 (1998). Reviewer: E.Vassiliou (Athens) MSC: 53C05 53C10 PDFBibTeX XMLCite \textit{Q.-S. Chi}, Int. J. Math. 9, No. 8, 945--955 (1998; Zbl 0937.53017) Full Text: DOI
Lychagin, V. V. Homogeneous structures on manifolds: Differential geometry from the point of view of differential equations. (English. Russian original) Zbl 0801.58043 Math. Notes 51, No. 4, 363-373 (1992); translation from Mat. Zametki 51, No. 4, 54-68 (1992). Reviewer: W.Mozgawa (Lublin) MSC: 58H15 53C15 58-02 PDFBibTeX XMLCite \textit{V. V. Lychagin}, Math. Notes 51, No. 4, 1 (1992; Zbl 0801.58043); translation from Mat. Zametki 51, No. 4, 54--68 (1992) Full Text: DOI
Bliznikas, V. I.; Vosilyus, R. Nonholonomic connections. (English. Russian original) Zbl 0648.53007 Lith. Math. J. 27, No. 1, 9-18 (1987); translation from Lit. Mat. Sb. 27, No. 1, 15-27 (1987). Reviewer: T.Aubin MSC: 53B15 53C05 58A30 PDFBibTeX XMLCite \textit{V. I. Bliznikas} and \textit{R. Vosilyus}, Lith. Math. J. 27, No. 1, 9--18 (1987; Zbl 0648.53007); translation from Lit. Mat. Sb. 27, No. 1, 15--27 (1987) Full Text: DOI
Kock, Anders Combinatorial notions relating to principal fibre bundles. (English) Zbl 0575.18005 J. Pure Appl. Algebra 39, 141-151 (1986). Reviewer: K.I.Rosenthal MSC: 18F15 53C05 51K10 PDFBibTeX XMLCite \textit{A. Kock}, J. Pure Appl. Algebra 39, 141--151 (1986; Zbl 0575.18005) Full Text: DOI
Hawkins, Thomas The Erlanger Programm of Felix Klein: Reflections on its place in the history of mathematics. (English) Zbl 0553.01009 Hist. Math. 11, 442-470 (1984). Reviewer: R.Cooke MSC: 01A55 PDFBibTeX XMLCite \textit{T. Hawkins}, Hist. Math. 11, 442--470 (1984; Zbl 0553.01009) Full Text: DOI
Chakmazyan, A. V. A connection in normal bundles of normalized submanifolds \(V_m\) in \(P_p\). (English) Zbl 0443.53006 J. Sov. Math. 14, 1205-1216 (1980). MSC: 53A20 53B10 53-02 PDFBibTeX XMLCite \textit{A. V. Chakmazyan}, J. Sov. Math. 14, 1205--1216 (1980; Zbl 0443.53006) Full Text: DOI
Evtushik, L. E.; Lumiste, Yu. G.; Ostianu, N. M.; Shirokov, A. P. Differential-geometric structures on manifolds. (English. Russian original) Zbl 0455.58002 J. Sov. Math. 14, 1573-1719 (1980); translation from Itogi Nauki Tekh., Ser. Probl. Geom. 9, 248 p. (1979). MSC: 58A20 58A15 53C15 58B20 55R10 PDFBibTeX XMLCite \textit{L. E. Evtushik} et al., J. Sov. Math. 14, 1573--1719 (1979; Zbl 0455.58002); translation from Itogi Nauki Tekh., Ser. Probl. Geom. 9, 248 p. (1979) Full Text: DOI
Lumiste, Ju. G. Connection theory in bundle spaces. (English) Zbl 0285.53027 J. Sov. Math. 1, 363-390 (1973). MSC: 53C05 53-02 PDFBibTeX XMLCite \textit{Ju. G. Lumiste}, J. Sov. Math. 1, 363--390 (1973; Zbl 0285.53027) Full Text: DOI
Kondo, Kazuo On the analytical and physical foundations of the theory of dislocations and yielding by the differential geometry of continua. (English) Zbl 0143.45203 Int. J. Eng. Sci. 2, 219-251 (1964). PDFBibTeX XMLCite \textit{K. Kondo}, Int. J. Eng. Sci. 2, 219--251 (1964; Zbl 0143.45203) Full Text: DOI
Nomizu, K. Recent development in the theory of connections and holonomy groups. (English) Zbl 0113.15503 Adv. Math. 1, 1-49 (1961). PDFBibTeX XMLCite \textit{K. Nomizu}, Adv. Math. 1, 1--49 (1961; Zbl 0113.15503) Full Text: DOI
Wakakuwa, H. On affinely connected manifolds with homogeneous holonomy group \(CL(nQ)\otimes T^ 1\). (English) Zbl 0107.39501 Tohoku Math. J., II. Ser. 11, 364-375 (1959). PDFBibTeX XMLCite \textit{H. Wakakuwa}, Tôhoku Math. J. (2) 11, 364--375 (1959; Zbl 0107.39501) Full Text: DOI
Wakakuwa, Hidekiyo On Riemannian manifolds with homogeneous holonomy group \(Sp(n)\). (English) Zbl 0085.16302 Tôhoku Math. J., II. Ser. 10, 274-303 (1958). PDFBibTeX XMLCite \textit{H. Wakakuwa}, Tôhoku Math. J. (2) 10, 274--303 (1958; Zbl 0085.16302) Full Text: DOI
Reinhart, Bruce L. Harmonic integrals on almost product manifolds. (English) Zbl 0081.31602 Trans. Am. Math. Soc. 88, 243-276 (1958). PDFBibTeX XMLCite \textit{B. L. Reinhart}, Trans. Am. Math. Soc. 88, 243--276 (1958; Zbl 0081.31602) Full Text: DOI
Kobayashi, Shoshichi Theory of connections. (English) Zbl 0124.37604 Ann. Mat. Pura Appl., IV. Ser. 43, 119-194 (1957). PDFBibTeX XMLCite \textit{S. Kobayashi}, Ann. Mat. Pura Appl. (4) 43, 119--194 (1957; Zbl 0124.37604) Full Text: DOI
Dolbeault-Lemoine, Simone Sur la déformabilité des variétés plongées dans un espace de Riemann. (French) Zbl 0075.17301 Ann. Sci. Éc. Norm. Supér., III. Sér. 73, 357-438 (1956). Reviewer: T. Hangan MSC: 53Cxx PDFBibTeX XMLCite \textit{S. Dolbeault-Lemoine}, Ann. Sci. Éc. Norm. Supér. (3) 73, 357--438 (1956; Zbl 0075.17301) Full Text: DOI Numdam Numdam EuDML
Berger, Marcel Sur les groupes d’holonomie homogènes de variétés à connexion affine et des variétés riemanniennes. (French) Zbl 0068.36002 Bull. Soc. Math. Fr. 83, 279-330 (1955). PDFBibTeX XMLCite \textit{M. Berger}, Bull. Soc. Math. Fr. 83, 279--330 (1955; Zbl 0068.36002) Full Text: DOI Numdam EuDML
Nomizu, Katsumi Reduction theorem for connections and its application to the problem of isotropy and holonomy groups of a Riemannian manifold. (English) Zbl 0067.14503 Nagoya Math. J. 9, 57-66 (1955). PDFBibTeX XMLCite \textit{K. Nomizu}, Nagoya Math. J. 9, 57--66 (1955; Zbl 0067.14503) Full Text: DOI
Libermann, Paulette Sur les structures presque complexes et autres structures infinitésimals régulières. (French) Zbl 0064.41702 Bull. Soc. Math. Fr. 83, 195-224 (1955). PDFBibTeX XMLCite \textit{P. Libermann}, Bull. Soc. Math. Fr. 83, 195--224 (1955; Zbl 0064.41702) Full Text: DOI Numdam EuDML
Ambrose, W.; Singer, I. M. A theorem on holonomy. (English) Zbl 0052.18002 Trans. Am. Math. Soc. 75, 428-443 (1953). PDFBibTeX XMLCite \textit{W. Ambrose} and \textit{I. M. Singer}, Trans. Am. Math. Soc. 75, 428--443 (1953; Zbl 0052.18002) Full Text: DOI
Wakakuwa, Hidekiyo On Riemann spaces whose homogeneous holonomy groups are integrable. (English) Zbl 0049.23304 Tôhoku Math. J., II. Ser. 4, 96-98 (1952). PDFBibTeX XMLCite \textit{H. Wakakuwa}, Tôhoku Math. J. (2) 4, 96--98 (1952; Zbl 0049.23304) Full Text: DOI
Chern, Shiing-shen; Chevalley, Claude Élie Cartan and his mathematical work. (English) Zbl 0046.00304 Bull. Am. Math. Soc. 58, 217-250 (1952). PDFBibTeX XMLCite \textit{S.-s. Chern} and \textit{C. Chevalley}, Bull. Am. Math. Soc. 58, 217--250 (1952; Zbl 0046.00304) Full Text: DOI
Hashimoto, Shintaro A new proof of Liber’s theorem. (English) Zbl 0044.37403 Kōdai Math. Semin. Rep. 1951, No. 5-6, 118-119 (1951). PDFBibTeX XMLCite \textit{S. Hashimoto}, Kōdai Math. Semin. Rep. 1951, 118--119 (1951; Zbl 0044.37403) Full Text: DOI
Sasaki, Shigeo An alternative proof of Liber’s theorem. (English) Zbl 0044.37402 Proc. Japan. Acad. 27, No. 2, 73-80 (1951). MSC: 53Cxx PDFBibTeX XMLCite \textit{S. Sasaki}, Proc. Japan Acad. 27, 73--80 (1951; Zbl 0044.37402) Full Text: DOI
Sasaki, Shigeo On a theorem concerning the homological structure and the holonomy groups of closed orientable symmetric spaces. (English) Zbl 0044.36703 Proc. Japan Acad. 27, No. 2, 81-85 (1951). MSC: 53Cxx PDFBibTeX XMLCite \textit{S. Sasaki}, Proc. Japan Acad. 27, 81--85 (1951; Zbl 0044.36703) Full Text: DOI
Bortolotti, Enea; Hlavatý, V. Contributi alla teoria delle connessioni. I: Connessioni proiettive: costruzione al finito, classificazione secondo Klein. (Schluß.). (Italian) JFM 63.1248.01 Ann. Mat. pura appl., Bologna, (4) 15, 129-154 (1936). Reviewer: Haantjes, J., Dr. (Amsterdam) PDFBibTeX XMLCite \textit{E. Bortolotti} and \textit{V. Hlavatý}, Ann. Mat. Pura Appl. (4) 15, 129--154 (1936; JFM 63.1248.01) Full Text: DOI
Bortolotti, Enea Nuova esposizione, su basi geometriche, del calcolo assoluto generalizzato del Vitali, e applicazione alle geometrie riemanniane di specie superiore. (Italian) Zbl 0003.32203 Rend. Sem. Mat. Univ. Padova 2, 1-48, 164-206 (1931). PDFBibTeX XMLCite \textit{E. Bortolotti}, Rend. Semin. Mat. Univ. Padova 2, 1--48, 164--206 (1931; Zbl 0003.32203) Full Text: Numdam Numdam EuDML