Hattori, Toshiaki Diophantine approximation in number fields and geometry of products of symmetric spaces. (English) Zbl 1479.11121 J. Math. Soc. Japan 73, No. 3, 885-932 (2021). Reviewer: István Gaál (Debrecen) MSC: 11J25 53C35 PDF BibTeX XML Cite \textit{T. Hattori}, J. Math. Soc. Japan 73, No. 3, 885--932 (2021; Zbl 1479.11121) Full Text: DOI OpenURL
Hussain, Mumtaz; Mahboubi, Seyyed Hassan; Motahari, Abolfazl Seyed Metrical theory for small linear forms and applications to interference alignment. (English) Zbl 1451.11084 Bailey, David H. (ed.) et al., From analysis to visualization. A celebration of the life and legacy of Jonathan M. Borwein, Callaghan, Australia, September 25–29, 2017. Cham: Springer. Springer Proc. Math. Stat. 313, 377-393 (2020). Reviewer: Symon Serbenyuk (Kyïv) MSC: 11J83 94A40 11J13 11K60 PDF BibTeX XML Cite \textit{M. Hussain} et al., Springer Proc. Math. Stat. 313, 377--393 (2020; Zbl 1451.11084) Full Text: DOI OpenURL
Chaubey, Sneha; Fuchs, Elena; Hines, Robert; Stange, Katherine E. The dynamics of super-Apollonian continued fractions. (English) Zbl 1436.11011 Trans. Am. Math. Soc. 372, No. 4, 2287-2334 (2019). Reviewer: Thomas B. Ward (Leeds) MSC: 11A55 11J70 11E20 37A44 37F31 52C26 PDF BibTeX XML Cite \textit{S. Chaubey} et al., Trans. Am. Math. Soc. 372, No. 4, 2287--2334 (2019; Zbl 1436.11011) Full Text: DOI arXiv OpenURL
Athreya, Jayadev S.; Ghosh, Anish The Erdős-Szüsz-Turán distribution for equivariant processes. (English) Zbl 1435.37014 Enseign. Math. (2) 64, No. 1-2, 1-21 (2018). Reviewer: Lingmin Liao (Créteil) MSC: 37A44 37A17 11K60 PDF BibTeX XML Cite \textit{J. S. Athreya} and \textit{A. Ghosh}, Enseign. Math. (2) 64, No. 1--2, 1--21 (2018; Zbl 1435.37014) Full Text: DOI arXiv OpenURL
Springborn, Boris The hyperbolic geometry of Markov’s theorem on Diophantine approximation and quadratic forms. (English) Zbl 1432.11072 Enseign. Math. (2) 63, No. 3-4, 333-373 (2017). MSC: 11J06 32G15 PDF BibTeX XML Cite \textit{B. Springborn}, Enseign. Math. (2) 63, No. 3--4, 333--373 (2017; Zbl 1432.11072) Full Text: DOI arXiv OpenURL
Abe, Ryuji; Aitchison, Iain R. Geometry and Markoff’s spectrum for \(\mathbb{Q}(i)\). I. (English) Zbl 1301.57011 Trans. Am. Math. Soc. 365, No. 11, 6065-6102 (2013). Reviewer: Yasushi Yamashita (Nara) MSC: 57M50 20H10 53C22 11J06 PDF BibTeX XML Cite \textit{R. Abe} and \textit{I. R. Aitchison}, Trans. Am. Math. Soc. 365, No. 11, 6065--6102 (2013; Zbl 1301.57011) Full Text: DOI OpenURL
Vulakh, L. Ya. Diophantine approximation in \(\mathbb{Q}(\sqrt{-30})\), \(\mathbb{Q}(\sqrt{-33})\) and \(\mathbb{Q}(\sqrt{-57})\). (English) Zbl 1273.11105 Funct. Approximatio, Comment. Math. 47, No. 2, 183-205 (2012). Reviewer: Thomas Schmidt (Corvallis) MSC: 11J06 11F06 PDF BibTeX XML Cite \textit{L. Ya. Vulakh}, Funct. Approximatio, Comment. Math. 47, No. 2, 183--205 (2012; Zbl 1273.11105) Full Text: DOI Euclid OpenURL
Vulakh, L. Ya. Farey polytopes and continued fractions associated with discrete hyperbolic groups. (English) Zbl 0924.11061 Trans. Am. Math. Soc. 351, No. 6, 2295-2323 (1999). Reviewer: Thomas Schmidt (Corvallis) MSC: 11J99 11J70 11J04 PDF BibTeX XML Cite \textit{L. Ya. Vulakh}, Trans. Am. Math. Soc. 351, No. 6, 2295--2323 (1999; Zbl 0924.11061) Full Text: DOI OpenURL
Louboutin, Stéphane Quadratic extensions of the rational field, the Gauss field or the field of cubic roots of unity of caliber 1. (Les extensions quadratiques du corps des rationnels, ou du corps de Gauss, ou du corps des racines cubiques de l’unité de calibres 1.) (French) Zbl 0717.11047 Manuscr. Math. 69, No. 4, 387-410 (1990). Reviewer: Richard A. Mollin (Calgary) MSC: 11R29 11R11 11R16 PDF BibTeX XML Cite \textit{S. Louboutin}, Manuscr. Math. 69, No. 4, 387--410 (1990; Zbl 0717.11047) Full Text: DOI EuDML OpenURL
Nowak, W. G. Bemerkungen über Fordkugeln. (Remarks on Ford balls). (German) Zbl 0616.10030 Abh. Math. Semin. Univ. Hamb. 56, 245-252 (1986). Reviewer: Th.Maxsein MSC: 11J99 11R11 11H99 PDF BibTeX XML Cite \textit{W. G. Nowak}, Abh. Math. Semin. Univ. Hamb. 56, 245--252 (1986; Zbl 0616.10030) Full Text: DOI OpenURL
Malyshev, A. V. Markov and Lagrange spectra (survey of the literature). (English) Zbl 0453.10031 J. Sov. Math. 16, 767-788 (1981). MSC: 11H50 11J04 11J70 11-02 PDF BibTeX XML Cite \textit{A. V. Malyshev}, J. Sov. Math. 16, 767--788 (1981; Zbl 0453.10031) Full Text: DOI OpenURL
Fomenko, O. M. Applications of the theory of modular forms to number theory. (English) Zbl 0446.10021 J. Sov. Math. 14, 1307-1362 (1980). MSC: 11F03 11-02 11F11 11F12 11F33 11F67 11E45 11N37 PDF BibTeX XML Cite \textit{O. M. Fomenko}, J. Sov. Math. 14, 1307--1362 (1980; Zbl 0446.10021) Full Text: DOI OpenURL
Schmidt, Asmus L. Diophantine approximation of complex numbers. (English) Zbl 0329.10023 Acta Math. 134, 1-85 (1975). MSC: 11J70 11H55 11J68 11H99 PDF BibTeX XML Cite \textit{A. L. Schmidt}, Acta Math. 134, 1--85 (1975; Zbl 0329.10023) Full Text: DOI OpenURL
Hofreiter, Nikolaus Diophantische Approximationen in imaginär quadratischen Zahlkörpern. (German) Zbl 0016.00901 Monatsh. Math. Phys. 45, 175-190 (1937). PDF BibTeX XML Cite \textit{N. Hofreiter}, Monatsh. Math. Phys. 45, 175--190 (1937; Zbl 0016.00901) Full Text: DOI OpenURL
Hofreiter, N. Diophantische Approximationen in imaginär quadratischen Zahlkörpern. (German) JFM 63.0151.01 Mh. Math. Phys. 45, 175-190 (1937). Reviewer: Perron, O., Prof. (München) PDF BibTeX XML Cite \textit{N. Hofreiter}, Monatsh. Math. Phys. 45, 175--190 (1937; JFM 63.0151.01) Full Text: DOI OpenURL
Perron, Oskar Über die Approximation einer komplexen Zahl durch Zahlen des Körpers \(K(i)\). II. (German) Zbl 0002.01301 Math. Ann. 105, 160-164 (1931). Reviewer: Kurt Mahler (Göttingen) MSC: 11J17 PDF BibTeX XML Cite \textit{O. Perron}, Math. Ann. 105, 160--164 (1931; Zbl 0002.01301) Full Text: DOI EuDML OpenURL
Perron, O. Über die Approximation einer komplexen Zahl durch Zahlen des Körpers \(\mathfrak K(i)\). II. (German) JFM 57.0242.01 Math. Ann. 105, 160-164 (1931). Reviewer: Fenchel-Sperling, Käthe (Kopenhagen) MSC: 11J17 PDF BibTeX XML Cite \textit{O. Perron}, Math. Ann. 105, 160--164 (1931; JFM 57.0242.01) Full Text: DOI EuDML OpenURL