×

zbMATH — the first resource for mathematics

Mesh and measure in early general relativity. (English) Zbl 1329.83042
Summary: In the early days of general relativity, several of Einstein’s readers misunderstood the role of coordinates or “mesh-system” in ways that threatened the basic predictions of the theory. This confusion largely derived from intrinsic defects of Einstein’s first systematic exposition of his theory. A few of Einstein’s followers, including Arthur Eddington, Hermann Weyl, and Max von Laue, identified the interpretive difficulties and solved them by combining a deeply geometrical understanding of the theory with detailed attention to the concrete conditions of measurement.

MSC:
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83F05 Relativistic cosmology
00A79 Physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bain, Jonathan, Whitehead׳s theory of gravity, Studies in History and Philosophy of Modern Physics, 29, 547-574, (1998) · Zbl 1222.83138
[2] (Barbour, Julian; Pfister, Herbert, Mach׳s principle: From Newton׳s bucket to quantum gravity, (1995), Birkhäuser Boston) · Zbl 0846.01008
[3] Beck, Guido (1929). Allgemeine Relativitätstheorie. In Hans Geiger, Karl Scheel (Eds.), Handbuch der Physik, Vol. 4: pp. 298-407.
[4] Becquerel, Jean, Le principe de la relativité et la théorie de la gravitation, (1922), Gauthier-Villars Paris · JFM 48.1062.06
[5] Becquerel, Jean, Gravitation einsteinienne : champ de gravitation d׳une sphère matérielle et signification physique de la formule de Schwarzschild, (1923), Hermann Paris · JFM 49.0621.02
[6] Biézunsky, Michel, Einstein à Paris : le temps n׳est plus…, (1991), Presses Universitaires de Vincennes Saint-Denis
[7] Brading, Katherine, 2005 A note on general relativity, energy conservation, and Noether׳s theorems. In Kox and Eisensteadt, pp. 125-135. · Zbl 1138.83302
[8] Brown, Harvey, Physical relativity: space-time structure from a dynamical perspective, (2005), Oxford University Press Oxford · Zbl 1084.83001
[9] Burali-Forti, Cesare, Flessione dei raggi luminosi stellari e spostamento secolare del perielio di mercurio, Accademia delle scienze di Torino, classe di scienze fisiche matematiche e naturali, Atti, 58, 149-151, (1922)
[10] Casimir, Hendrik, Haphazard reality : half a century of science, (1983), Harper & Row New York
[11] Cassirer, Ernst, Zur einstein׳schen relativitätstheorie. erkenntnistheoretische betrachtungen, (1921), Bruno Cassirer Berlin · JFM 48.0984.02
[12] Cattani, Carlo, & De Maria, Michelangelo (1993). Conservation laws and gravitational waves in general relativity. In Earman, Janssen, & Norton, pp. 63-87.
[13] Chazy, Jean, Sur LES fonctions arbitraires figurant dans le ds^{2} de la gravitation einsteinienne, Adadémie des Science, Comptes-Rendus Hebdomadaires des Séances, 173, 1921, 905-907, (1921) · JFM 48.1002.03
[14] Chazy, Jean, La théorie de la relativité et la mécanique céleste, 2 Vols, (1928-1930), Gauthier-Villars Paris
[15] Crelinsten, Jeffrey, Einstein׳s jury: the race to test relativity, (2006), Princeton University Press Princeton · Zbl 1104.01008
[16] Cunningham, Ebenezer, Einstein׳s relativity theory of gravitation. III. the crucial phenomena, Nature, 104, 394-395, (1919)
[17] Damour, Thibault, & Schäfer, Gerhard (1992). Levi-Civita and the general-relativistic problem of motion. In Eisenstaedt & Kox, pp. 393-399.
[18] Darrigol, Olivier, Physics and necessity: rationalist pursuits from the Cartesian past to the quantum present, (2014), Oxford University Press Oxford
[19] Darrigol, Olivier, The mystery of riemann׳s curvature, Historia Mathematica, 42, 47-83, (2014) · Zbl 1312.01009
[20] de Sitter, Willem, On einstein׳s theory of graviation, and its astronomical consequences, Royal Astronomical Society, Monthly Notices, 76, 699-728, (1916)
[21] de Sitter, Willem, On einstein׳s theory of graviation, and its astronomical consequences. second paper, Royal Astronomical Society, Monthly Notices, 77, 155-184, (1916)
[22] Droste, Johannes, Het zwaartekrachtsveld Van een of meer lichamen volgens de theorie Van Einstein, (1916), Brill Leiden · JFM 46.1330.03
[23] Droste, Johannes (1916b). The field of n moving centers in Einstein׳s theory of gravitation. In Koninklijke Akademie van Wetenshappen te Amsterdam, Proceedings 19, 447-455.
[24] Droste, Johannes, & Lorentz, Hendrik (1917). De beweging van een stelsel lichamen onder den invloed van hunne onderlinge aantrekking, behandeld volgens de theorie van Einstein. Koninklijke Adademie van Wetenshappen te Amsterdam, Wis-en Natuurkundige Afdeeling, Verslagen van de gewone vergaderingen, 26, 392-403, 649-660. [English translation in H. Lorentz, Collected papers (The Hague, 1934-1939), Vol. 5, pp. 330-355].
[25] Earman, John; Glymour, Clark, The gravitational red shift as a test of general relativity: history and analysis, Studies in History and Philosophy of Science, 11, 175-213, (1980)
[26] Earman, John; Glymour, Clark, Relativity and eclipses: the british eclipse expeditions of 1919 and their predecessors, Studies in History and Philosophy of Science, 11, 49-85, (1980)
[27] Earman, John, & Janssen, Michel (1993). Einstein׳s explanation of the motion of mercury’s perihelion. In Earman, Janssen, & Norton, pp. 129-172.
[28] (Earman, John; Janssen, Michel; Norton, John, The attraction of gravitation: New studies in the history of general relativity (Einstein studies, Vol. 5, (1993), Birkhäuser Boston) · Zbl 0846.01009
[29] Eddington, Arthur Stanley, Report on the relativity theory of gravitation, (1918), Fleetway Press London · JFM 46.1279.02
[30] Eddington, Arthur Stanley, Reply to Rice 1920, Nature, 104, 598-599, (1920)
[31] Eddington, Arthur Stanley, Space, time and gravitation, (1920), Cambridge University Press Cambridge
[32] Eddington, Arthur Stanley, The mathematical theory of relativity, (1923), Cambridge University Press Cambridge
[33] Einstein, Albert, Über den einfluß der schwerkraft auf die ausbreitung des lichtes, Annalen der Physik, 35, 898-908, (1911) · JFM 42.0852.01
[34] Einstein, Albert (1915a). Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Königlich Preußische Akademie der Wissenschaften zu Berlin Sitzungsberichte, 831-839 · JFM 45.1120.01
[35] Einstein, Albert (1915b). Die Feldgleichungen der Gravitation. Königlich Preußische Akademie der Wissenschaften zu Berlin Sitzungsberichte, 844-847 · JFM 45.1120.02
[36] Einstein, Albert, Die grundlage der allgemeinen relativitätstheorie, Annalen der Physik, 49, 769-822, (1916) · JFM 46.1293.01
[37] Einstein, Albert, über die spezielle und die allgemeine relativitätstheorie (gemeinverständlich), (1917), Vieweg Braunschweig · JFM 46.1279.01
[38] Einstein, Albert, Prinzipielles zur allgemeinen relativitätstheorie, Annalen der Physik, 55, 241-244, (1918) · JFM 46.1292.02
[39] Einstein, Albert, the meaning of relativity: four lectures delivered at Princeton university, may 1921, (1923), Princeton University Press Princeton
[40] Eisenstaedt, Jean, Histoire et singularités de la solution de Schwarzschild (1915-1923), Archive for the History of Exact Sciences, 27, 157-198, (1982) · Zbl 0493.01022
[41] Jean Eisenstaedt & Ann Kox (Eds.). (1992). Studies in the history of general relativity (Einstein studies,Vol. 3).Boston: Birkhäuser.
[42] Flamm, Ludwig, Beiträge zur einsteinschen gravitationstheorie, Physikalische Zeitschrift, 17, 448-454, (1916) · JFM 46.1314.02
[43] Fric, Jacques (2013). Painlevé et la relativité générale (Thèse de doctorat). Université Denis Diderot. 〈http://www.bibnum.education.fr/sites/default/files/painleve_these.pdf〉 (last accessed September 2014).
[44] Friedman, Robert Marc, The politics of excellence: behind the nobel prize in science, (2001), Times books New York
[45] Giovanelli, Marco, ‘but one must not legalize the mentioned sin’: phenomenological vs. dynamical treatments of rods and clocks in einstein׳s thought, Studies in History and Philosophy of Modern Physics, 48, 20-44, (2014) · Zbl 1301.83003
[46] (Goenner, Hubert; Renn, Jürgen; Ritter, Jim; Sauer, Tilman, The expanding worlds of general relativity (Einstein Studies, Vol. 7, (1999), Birkhäuser Boston) · Zbl 0924.00026
[47] Gullstrand, Allvar, Allgemeine Lösung des statischen einkörperproblems in der einsteinschen gravitationstheorie, Arkiv för Matematik, Atronomi och Fysik, 16, 8, 1-15, (1921), [printed 31 May 1921] · JFM 48.1037.03
[48] Gullstrand, Allvar, Das statische einkörperproblem in der einstein׳schen theorie. erwiderung zu herrn E. Kretschmann, Arkiv för Matematik, Atronomi och Fysik, 17, 3, 1-5, (1922) · JFM 48.1038.03
[49] Gullstrand, Allvar, Antwort an herrn E. Kretschmann, Arkiv för Matematik, Atronomi och Fysik, 17, 25, 4, (1923)
[50] Guth, Eugene (1970). Contribution to the history of Einstein׳s geometry as a branch of physics (pp. 161-208). In Moshe Carmeli, Stuart Fickler, & Louis Witten (Eds.), Relativity. Proceedings of the relativity conference in the Midwest. Cincinnati, Ohio, June 2-6, 1969, New York: Springer.
[51] Hamel, Georg, Zur einsteinschen gravitationstheorie, berliner mathematische gesellschaft, Sitzungsberichte, 19, 65-73, (1921)
[52] Havas, Peter, Four-dimensional formulations of Newtonian mechanics and their relation to the special and the general theory of relativity, Reviews of Modern Physics, 36, 938-965, (1964) · Zbl 0123.44101
[53] Hentschel, Klaus, Erwin finlay freundlich and testing einstein׳s theory of relativity, Archive for the History of Exact Sciences, 47, 143-201, (1994) · Zbl 0806.01022
[54] Hentschel, Klaus, Zum zusammenspiel von instrument, experiment und theorie: rotverschiebung im sonnenspektrum und verwandte spektrale verschiebungseffekte von 1880 bis 1960, (1998), Kovac Hamburg
[55] Hilbert, David, Die grundlagen der physik. (zweite mitteilung.), Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, Nachrichten, 53-76, (1917) · JFM 46.1298.01
[56] Howard, Don (1999). Point coincidences and pointer coincidences: Einstein on the invariant content of space-time theories. In Goenner et al. (1999), pp. 463-500. · Zbl 0960.83501
[57] Howard, Don, & Norton, John (1993). Out of the labyrinth? Einstein, Hertz, and the Göttingen answer to the hole argument. In Earman, Janssen, & Norton, pp. 30-62.
[58] Howard, Don, & John Stachel (Eds.). (1989). Einstein and the history of general relativity (Einstein studies,Vol. 1).Boston: Birkhäuser.
[59] Husserl, Edmund, Ideen zu einer reinen phänomenologie und phänomenologischen philosophie. erstes buch: allgemeine einführung in die reine phänomenologie, Jahrbuch für Philosophie und Phänomenologische Forschung, 1, 1, 1-323, (1913)
[60] Janssen, Michel (1993). H. A. Lorentz׳s attempt to give a coordinate-free formulation of the general theory of relativity. In Eisenstaedt & Kox, pp. 344-363.
[61] Janssen, Michel (2004). Einstein׳s first systematic exposition of general relativity. PhilSci Archive (December 2004) 〈http://philsci-archive.pitt.edu/id/eprint/212〉.
[62] Janssen, Michel, Of pots and holes: einstein׳s bumpy road to general relativity, Annalen der Physik, 14, Supplement, 58-85, (2005)
[63] Kennefick, Daniel (2007). Not only because of theory: Dyson, Eddington and the competing myths of the 1919 eclipse expedition. arXiv:0709.0685. · Zbl 1229.83012
[64] Kennefick, Daniel, Testing relativity from the 1919 eclipse—A question of bias, Physics Today, 62, 37-42, (2009)
[65] (Kox, Anne; Eisensteadt, Jean, The universe of general relativity (Einstein Studies, Vol. 11, (2005), Birkhäuser Boston)
[66] Kretschmann, Erich, Über den physikalischen sinn der relativitätspostulate. A. einsteins neue und seine ursprüngliche relativitätstheorie, Annalen der Physik, 53, 575-614, (1917) · JFM 46.1292.01
[67] Kretschmann, Erich, Eine bemerkung zu hrn. A. gullstrands abhandlung: ‘allgemeine Lösung des statischen einkörperproblems in der einsteinschen gravitationstheorie’, Arkiv för Matematik, Atronomi och Fysik, 17, 2, 1-4, (1922) · JFM 48.1038.02
[68] Kretschmann, Erich, Das statische einkörperproblem in der einstein׳schen theorie. antwort an hrn. A. gullstrand, Arkiv för Matematik, Atronomi och Fysik, 17, 25, 1-4, (1923) · JFM 49.0635.01
[69] Lanczos, Cornelius, Ein vereinfachendes koordinatensystem für die einsteinschen gravitationsgleichungen, Physikalische Zeitschrift, 23, 537-539, (1922) · JFM 48.1023.01
[70] Lanczos, Cornelius, Zur theorie der einsteinschen gravitationsgleichungen, Zeitschrift für Physik, 13, 7-16, (1923) · JFM 49.0650.06
[71] Landau, Lev Davidovich; Lifshitz, Evgeny Mikhailovich, The classical theory of fields, (1951), Addison-Westley Reading, MA
[72] Landau, Lev Davidovich; Lifshitz, Evgeny Mikhailovich, Mechanics, (1960), Pergamon Press Oxford
[73] Larmor, Joseph, Gravitation and light, Nature, 104, 412, (1919) · JFM 47.0822.05
[74] Larmor, Joseph, Gravitation and light, Nature, 104, 530, (1920) · JFM 47.0826.01
[75] Laue, Max, Theoretisches über neuere optische beobachtungen zur relativitätsteorie, Physikalische Zeitschrift, 21, 659-662, (1920) · JFM 47.0787.02
[76] Laue, Max, Zur theorie der rotverschiebung der spektrallinien an der sonne, Zeitschrift für Physik, 3, 389-395, (1920)
[77] Laue, Max, die relativitätstheorie, vol. 2: die allgemeine relativitätstheorie und einsteins lehre der schwerkraft, (1921), Vieweg Braunschweig · JFM 48.1321.01
[78] Lehner, Christoph (2005). Einstein and the principle of general relativity, 1916-1921. In Kox & Eisenstaedt. · Zbl 1099.83503
[79] Le Roux, Jean, La loi de gravitation et ses conséquences, Adadémie des Sciences, Comptes-Rendus Hebdomadaires des séances, 172, 1467-1469, (1921) · JFM 48.0994.02
[80] Levi-Civita, Tullio, Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica Della curvatura riemanniana, Rendiconti del Circolo Matematico di Palermo, 42, 173-205, (1917) · JFM 46.1125.02
[81] Levi-Civita, Tullio, “statica einsteiniana,” reale accademia dei lincei, classe di scienze fisiche, matematiche e naturali, Atti, 26, 458-470, (1917)
[82] Levi-Civita, Tullio, La teoria di Einstein e il principio di Fermat, Il nuovo Cimento, 16, 105-114, (1918) · JFM 46.1328.01
[83] Mach, Ernst, Die mechanik in ihrer entwicklung. historisch-kritisch dargestellt, (1883), Brockhaus Leipzig · JFM 15.0762.01
[84] Mie, Gustav, Die einführung eines vernunftgemässen koordinatensystems in die einsteinsche gravitationstheorie und das gravitationsfeld einer schweren kugel, Annalen der Physik, 62, 46-74, (1920) · JFM 47.0786.02
[85] Nordmann, Charles, Einstein expose et discute sa théorie, Revue des deux Mondes, 9, 129-166, (1922)
[86] Norton, John, Einstein, the hole argument and the reality of space, (Forge, John, Measurement, realism, and objectivity, (1987), Reidel Dordrecht), 153-188
[87] Norton, John (1992). The physical content of general covariance. In Eisenstaedt & Kox, pp. 281-315.
[88] Norton, John, General covariance and the foundations of general relativity: eight decades of dispute, Reports on Progress in Physics, 56, 791-858, (1993)
[89] Norton, John (2004). The hole argument. In Edward N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2004 Edition). 〈http://plato.stanford.edu/archives/spr2004/entries/spacetime-holearg/ast〉 (accessed January 2013).
[90] Oseen, Carl, Über das allgemeine statische, kugelsymmetrische gravitationsfeld nach der einsteinschen theorie, Arkiv för Matematik, Atronomi och Fysik, 16, 9, 1-6, (1921) · JFM 48.1038.01
[91] Painlevé, Paul, La mécanique classique et la théorie de la relativité, Arkiv för Matematik, Atronomi och Fysik, 173, 677-680, (1921) · JFM 48.0997.03
[92] Painlevé, Paul, La gravitation dans la mécanique de Newton et dans la mécanique d׳einstein, Adadémie des Science, Comptes-Rendus Hebdomadaires des Séances, 173, 873-887, (1921) · JFM 48.0998.01
[93] Painlevé, Paul, La théorie classique et la théorie einsteinienne de la gravitation, Adadémie des Science, Comptes-Rendus Hebdomadaires des Séances, 174, 1137-1143, (1922) · JFM 48.0998.02
[94] Pauli, Wolfgang, Relativitätstheorie, (1921), Teubner Berlin · JFM 48.0977.01
[95] Reich, Karin, Die entwicklung des tensorkalküls. vom absoluten differentialkalkül zur relativitätstheorie, (1994), Birkhäuser Basel · Zbl 0820.01009
[96] (Renn, Jürgen, The genesis of general relativity, 4 Vols., (2007), Springer Berlin)
[97] Rice, James, The predicted shift of the Fraunhofer lines, Nature, 104, 598, (1920)
[98] Riemann, Bernhard, Über die hypothesen, welche der geometrie zugrunde legen [habilitation lecture, 1854], Königliche Gesellschaft der Wissenschaften zu Göttingen, Abhandlungen, 13, 132-152, (1867)
[99] Ryckman, Thomas, The reign of relativity: philosophy in physics 1915-1925, (2005), Oxford University Press Oxford
[100] Rynasiewicz, Robert (1999). Kretschmann׳s analysis of covariance and relativity principles. In Goenner et al., pp. 431-462. · Zbl 0960.83500
[101] Sauer, Tilman, Einstein׳s review paper on general relativity theory, (Grattan-Guiness, Ivor, Landmark writings in western Mathematics, 1640-1940, (2005), Elsevier Amsterdam), 802-822
[102] Sauer, Tilman (2013). Marcel Grossmann׳s contribution to the general theory of relativity. arXiv:1312.4068.
[103] Schwarzschild, Karl (1916). Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Königlich preussische Akademie der Wissenschaften, Sitzungsberichte, 189-196 · JFM 46.1296.02
[104] Scott, Robert B., Teaching the gravitational redshift: lessons from the history and philosophy of physics. Spanish relativity meeting (ERE 2014): almost 100 years after einstein׳s revolution, Journal of Physics: Conference Series, 600, 012055, (2015)
[105] Silberstein, Ludwik, the theory of general relativity and gravitation [toronto lectures of jan 1921], (1922), Van Nostrand New York
[106] Stachel, John (1989a). The rigidly rotating disk as the ׳missing link׳ in the history of general relativity. In Howard & Stachel (1989), pp. 48-62.
[107] Stachel, John (1989b). Einstein׳s search for general covariance, 1912-1915. In Howard & Stachel, pp. 62-100.
[108] Stachel, John, The meaning of general covariance: the hole story, (Earman, John; Janis, Allen I.; Massey, Gerald J.; Rescher, Nicholas, Philosophical problems of the internal and external world: Essays on the philosophy of Adolf Grünbaum, (1993), Universitätsverlag/Pittsburgh: University of Pittsburgh Press) Konstanz), 129-160
[109] Stachel, John, The hole argument and some physical and philosophical implications, Living Reviews in Relativity, 17, 1-64, (2014) · Zbl 1320.83016
[110] Stanley, Matthew, “an expedition to heal the wounds of war”: the 1919 eclipse and Eddington as quaker adventurer, Isis, 94, 57-89, (2003)
[111] Synge, John Lighton, A system of space-time co-ordinates, Nature, 108, 275, (1921)
[112] Synge, John Lighton, Relativity: the general theory, (1960), North Holland Amsterdam
[113] Vilain, Christiane (1992). Spherical coordinates in general relativity from 1915 to 1960: A physical interpretation. In Eisenstaedt & Cox, pp. 419-436.
[114] Weyl, Hermann, Zur gravitationstheorie, Annalen der Physik, 54, 117-145, (1917) · JFM 46.1303.01
[115] Weyl, Hermann, Raum · zeit · materie: vorlesungen über allgemeine relativitätstheorie, (1918), Springer Berlin · JFM 46.1277.01
[116] Weyl, Hermann, Raum · zeit · materie: vorlesungen über allgemeine relativitätstheorie, (1919), Springer Berlin · JFM 47.0775.01
[117] Weyl, Hermann, Raum · zeit · materie: vorlesungen über allgemeine relativitätstheorie, (1921), Springer Berlin · JFM 48.0984.01
[118] Whitehead, Alfred North, The principle of relativity with applications to physical science, (1922), Cambridge University Press Cambridge · JFM 48.1063.16
[119] Wintner, Aurel, Störungstheorie und perihelformel, Zeitschrift für Physik, 33, 635-642, (1922) · JFM 51.0721.05
[120] Wintner, Aurel, Störungstheoretische bemerkungen zur einsteinschen perihel-formel, Astronomische Nachrichten, 224, 379-382, (1922) · JFM 50.0618.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.