×

Operator \(\theta\)-Hölder functions. (English) Zbl 1508.47018

Summary: An important problem stemming from perturbation theory concerns description and understanding of operator \(\theta\)-Hölder functions. This article presents a survey of recent developments concerning operator \(\theta\)-Hölder functions with respect to symmetric quasi-norms.

MSC:

47A55 Perturbation theory of linear operators
46L51 Noncommutative measure and integration
47A60 Functional calculus for linear operators
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47-02 Research exposition (monographs, survey articles) pertaining to operator theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nikol’skaya, L.; Farforovskaya, Y., Hölder functions are operator-Hölder, Algebra i Analiz, 22, 198-213 (2010) · Zbl 1228.47020
[2] Aleksandrov, AB; Peller, VV, Hankel and Toeplitz-Schur multipliers, Math. Ann., 324, 277-327 (2002) · Zbl 1030.47019
[3] Aleksandrov, AB; Peller, VV, Functions of operators under perturbations of class \({\mathbf{S}}_p\), J. Funct. Anal., 258, 3675-3724 (2010) · Zbl 1196.47012
[4] Aleksandrov, AB; Peller, VV, Operator Hölder-Zygmund functions, Adv. Math., 224, 910-966 (2010) · Zbl 1193.47017
[5] Aleksandrov, AB; Peller, VV, Operator Lipschitz functions (Russian), Uspekhi Matematicheskikh Nauk, 71, 430, 3-106 (2016)
[6] Aleksandrov, AB; Peller, VV; Potapov, D.; Sukochev, F., Functions of normal operators under perturbations, Adv. Math., 226, 5316-5251 (2011) · Zbl 1220.47018
[7] Ando, T., Comparison of norms \(\Vert |f(A)-f(B)|\Vert\) and \(\Vert f(|A-B|)\Vert \), Math. Z., 197, 403-409 (1988) · Zbl 0618.47007
[8] Bennett, C.; Sharpley, R., Interpolation of Operators (1988), London: Academic Press Inc., London · Zbl 0647.46057
[9] Bhatia, R., Some inequalities for norm ideals, Commun. Math. Phys., 111, 33-39 (1987) · Zbl 0632.47005
[10] Bhatia, R., Matrix Analysis (1997), Berlin: Springer, Berlin
[11] Birman, M.S., Solomjak, M.Z.: Estimates for the difference of fractional powers of selfadjoint operators under unbounded perturbations, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 178 (1989) (Issled. Lineǐn. Oper. Teorii Funktsiǐ. 18, 120-145, 185; translation in J. Soviet Math. 61(2), 2018-2035 (1992)) · Zbl 0784.47011
[12] Birman, M.; Solomjak, M., Spectral Theory of Self-adjoint Operators in Hilbert Space, 301 (1986), Dordrecht: D. Reidel Publishing Company, Dordrecht
[13] Birman, MS; Solomjak, MZ, Double operator integrals in a Hilbert space, Integr. Equ. Oper. Theory, 47, 131-168 (2003) · Zbl 1054.47030
[14] Birman, MS; Koplienko, LS; Solomjak, MZ, Estimates of the spectrum of a difference of fractional powers of selfadjoint operators, Izv. Vysš. Učebn. Zaved. Matematika, 3, 154, 3-10 (1975) · Zbl 0313.47020
[15] Caspers, M.; Montgomery-Smith, S.; Potapov, D.; Sukochev, F., The best constants for operator Lipschitz functions on Schatten classes, J. Funct. Anal., 267, 3557-3579 (2014) · Zbl 06354029
[16] Caspers, M.; Potapov, D.; Sukochev, F.; Zanin, D., Weak type estimates for the absolute value mapping, J. Oper. Theory, 73, 2, 361-384 (2015) · Zbl 1389.47063
[17] Caspers, M.; Potapov, D.; Sukochev, F.; Zanin, D., Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture, Am. J. Math., 141, 593-610 (2019) · Zbl 07069612
[18] Czerwinska, M.; Kaminska, A., Geometric properties of noncommutative symmetric spaces of measurable operators and unitary matrix ideals, Commun. Math., 57, 45-122 (2017) · Zbl 1416.46016
[19] Daletskii, YuL; Krein, SG, Integration and differentiation of functions of Hermitian operators and application to the theory of perturbations, Trudy Sem Funktsion. Anal. Voronezh. Gos. Univ., 1, 81-105 (1956) · Zbl 0073.09701
[20] Davies, EB, Lipschitz continuity of functions of operators in the Schatten classes, J. Lond. Math. Soc., 37, 148-157 (1988) · Zbl 0648.47011
[21] Davies, EB, Spectral Theory and Differential Operators (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0893.47004
[22] de Pagter, B.; Sukochev, FA, Differentiation of operator functions in non-commutative \(L_p\)-spaces, J. Funct. Anal., 212, 28-75 (2004) · Zbl 1075.46054
[23] de Pagter, B.; Sukochev, E., Commutator estimates and \(R{\mathbb{R}} \)-flows in non-commutative operator spaces, Proc. Edinb. Math. Soc., 50, 2, 293-324 (2019) · Zbl 1136.46044
[24] de Pagter, B.; Witvliet, H.; Sukochev, F., Double operator integral, J. Funct. Anal., 192, 52-111 (2002) · Zbl 1079.47502
[25] de Pagter, B.; Sukochev, FA; Witvliet, H., Double operator integrals, J. Funct. Anal., 192, 1, 52-111 (2002) · Zbl 1079.47502
[26] Dixmier, J., Les algebres d’operateurs dans l’Espace Hilbertien (1969), Paris: Gauthier-Vallars, Paris · Zbl 0175.43801
[27] Dodds, P., de Pagter, B., Sukochev, F.: Theory of noncommutative integration (unpublished manuscript) · Zbl 1362.46063
[28] Dodds, P., Dodds, T., Sukochev, F., Zanin, D.: Arithmetic-geometric mean and related submajorization and norm inequalities for \(\tau \)-measurable operators (submitted manuscript)
[29] Dodds, P.; Dodds, T., On a Submajorization Inequality of T. Ando, Operator Theory: Advances and Applications (1995), Basel: Birkhäuser Verlag, Basel · Zbl 0826.46054
[30] Dodds, P.; de Pagter, B., Normed Köthe spaces: A non-commutative viewpoint, Indag. Math., 25, 206-249 (2014) · Zbl 1318.46041
[31] Dodds, P.; Sukochev, F., Submajorisation inequalities for convex and concave functions of sums of measurable operators, Positivity, 13, 107-124 (2009) · Zbl 1170.46055
[32] Dodds, P.; Dodds, T.; de Pagter, B., Fully symmetric operator spaces, Integr. Equ. Oper. Theory, 15, 942-972 (1992) · Zbl 0807.46028
[33] Dodds, P.; Dodds, T.; de Pagter, B., Noncommutative Köthe duality, Trans. Am. Math. Soc., 339, 717-750 (1993) · Zbl 0801.46074
[34] Dodds, P.; Dodds, T.; Sukochev, F.; Tikhonov, O., A non-commutative Yosida-Hewitt theorem and convex sets of measurable operators closed locally in measure, Positivity, 9, 457-484 (2005) · Zbl 1123.46044
[35] Dodds, P.; Dodds, T.; Sukochev, F., On \(p\)-convexity and \(q\)-concavity in non-commutative symmetric spaces, Integr. Equ. Oper. Theory, 78, 91-114 (2014) · Zbl 1298.46052
[36] Dovgoshey, O.; Martio, O.; Ryazanov, V.; Vuorinen, M., The Cantor function, Expos. Math., 24, 1-37 (2006) · Zbl 1098.26006
[37] Fack, T.; Kosaki, H., Generalized \(s\)-numbers of \(\tau \)-measurable operators, Pac. J. Math., 123, 269-300 (1986) · Zbl 0617.46063
[38] Hardy, GH, Weierstrass’s non-differentiable function, Trans. Am. Math. Soc., 17, 301-325 (1916) · JFM 46.0401.03
[39] Hiai, F., Matrix analysis: matrix monotone functions, matrix means, and majorization, Interdiscip. Inf. Sci., 16, 139-248 (2010) · Zbl 1206.15019
[40] Hiai, F.; Nakamura, Y., Distance between unitary orbits in von Neumann algebras, with appendix: generalized powers-Størmer inequality by H. Kosaki, Pac. J. Math., 138, 259-294 (1989) · Zbl 0667.46044
[41] Huang, J., Sukochev, F., Zanin, D.: Operator \(\theta \)-Hölder functions with respect to \(||\cdot ||_p, 0< p\le \infty \) (submitted manuscript)
[42] Huang, J.; Levitina, G.; Sukochev, F., Completeness of symmetric \(\varDelta \)-normed spaces of \(\tau \)-measurable operators, Stud. Math., 237, 3, 201-219 (2017) · Zbl 1385.46046
[43] Huang, J.; Sukochev, F.; Zanin, D., Logarithmic submajorization and order-preserving isometries, submitted, J. Funct. Anal., 278, 4, 108352 (2020) · Zbl 1444.46009
[44] Kalton, N., Quasi-Banach Spaces. Handbook of the Geometry of Banach Spaces, 1099-1130 (2003), Amsterdam: North-Holland, Amsterdam · Zbl 1059.46004
[45] Kalton, N.; Sukochev, F., Symmetric norms and spaces of operators, J. Reine Angew. Math., 621, 81-121 (2008) · Zbl 1152.47014
[46] Kalton, N.; Peck, N.; Rogers, J., An F-space Sampler, London Math. Soc. Lecture Note Ser. (1985), Cambridge: Cambridge University Press, Cambridge · Zbl 0556.46002
[47] Kato, T., Continuity of the map \(S\rightarrow |S|\) for linear operator, Proc. Jpn. Acad., 49, 157-160 (1973) · Zbl 0301.47006
[48] Kittaneh, F., Inequalities for the Schatten p-norm IV, Commun. Math. Phys., 104, 581-585 (1986) · Zbl 0612.47018
[49] Krein, MG, On some new studies in the perturbation theory of self-adjoint operators, First Mathematics Summer School, 103-187 (1964), Kiev: Naukova Dumka, Kiev · Zbl 1245.47005
[50] Krein, S.; Petunin, Y.; Semenov, E., Interpolation of linear operators, Trans. Math. Mon. (1982), Providence: AMS, Providence · Zbl 0493.46058
[51] Leschke, H.; Sobolev, A.; Spitzer, W., Trace formulas for Wiener-Hopf operators with applications to entropies of free fermionic equilibrium states, J. Funct. Anal., 273, 1049-1094 (2017) · Zbl 1377.47012
[52] Lord, S., Sukochev, F., Zanin, D.: Singular traces: theory and applications. In: Studies in Mathematics, vol. 46. Walter de Gruyter, Berlin (2013) · Zbl 1275.47002
[53] Löwner, K., Uber monotone Matrixfunktionen (German), Math. Z., 38, 177-216 (1934) · JFM 60.0055.01
[54] Marshall, A.; Olkin, I.; Arnold, B., Inequalities: Theory of Majorization and its Applications. Springer Series in Statistics (2011), New York: Springer, New York · Zbl 1219.26003
[55] Nazarov, F.; Peller, V., Lipschitz functions of perturbed operators, C. R. Math. Acad. Sci. Paris, 347, 857-862 (2009) · Zbl 1169.47015
[56] Nelson, E., Notes on non-commutative integration, J. Funct. Anal., 15, 103-116 (1974) · Zbl 0292.46030
[57] Okada, S., Ricker, W., Sánchez Pérez, E.: Optimal domain and integral extension of operators acting in function spaces. In: Operator Theory, Advances and Applications, vol. 180. Birkhäuser, Basel, Switzerland (2008) · Zbl 1145.47027
[58] Peller, V.: Hankel operator in the perturbation theory of unbounded self-adjoint operators. In: Analysis and Partial Differential Equations. Lecture Notes in Pure Appl. math., vol. 122, pp. 529-544. Dekker, New York (1990) · Zbl 0716.47015
[59] Peller, V., Hankel operators in the theory of perturbations of unitary and self-adjoint operators, Funktsional. Anal. i Prilozhen., 19, 2, 37-51 (1985) · Zbl 0587.47016
[60] Pietsch, A., Operator ideals (1978), Berlin: Deutscher Verlag der Wissenschaften, Berlin · Zbl 0399.47039
[61] Pisier, G.; Xu, Q., Non-commutative \(L^p\)-spaces, in Handbook of the Geometry of Banach spaces, 1459-1517 (2003), Amsterdam: North-Holland, Amsterdam · Zbl 1046.46048
[62] Potapov, D.; Sukochev, F., Unbounded Fredholm modules and double operator integrals, J. Reine Angew. Math., 626, 159-185 (2009) · Zbl 1189.46063
[63] Potapov, D.; Sukochev, F., Double operator integrals and submajorization, Math. Model. Nat. Phenom., 5, 317-339 (2010) · Zbl 1214.46042
[64] Potapov, D.; Sukochev, F., Operator-Lipschitz functions in Schatten-von Neumann classes, Acta Math., 207, 375-389 (2011) · Zbl 1242.47013
[65] Powers, R.; Størmer, E., Free states of the canonical anticommutation relations, Commun. Math. Phys., 16, 1-33 (1970) · Zbl 0186.28301
[66] Ricard, É., Fractional powers on noncommutative \(L_p\) for \(p<1\), Adv. Math., 333, 194-211 (2018) · Zbl 1401.46044
[67] Segal, I., A non-commutative extension of abstract integration, Ann. Math., 57, 401-457 (1953) · Zbl 0051.34201
[68] Skripka, A.: Operator integration in noncommutative analysis, Notices Amer. Math. Soc. (to appear) · Zbl 1427.47006
[69] Skripka, A.; Tomskova, A., Multilinear Operator Integrals: Theory and Applications, Lecture Notes in Mathematics (2019), Berlin: Springer, Berlin · Zbl 1458.47003
[70] Sobolev, A., Functions of self-adjoint operators in ideals of compact operators, J. Lond. Math. Soc., 95, 2, 157-176 (2017) · Zbl 1482.47024
[71] Sobolev, A., Quasi-classical asymptotics for functions of Wiener-Hopf operators: smooth versus non-smooth symbols, Geom. Funct. Anal., 27, 676-725 (2017) · Zbl 1422.47054
[72] Sukochev, F., Completeness of quasi-normed symmetric operator spaces, Indag. Math., 25, 376-388 (2014) · Zbl 1298.46051
[73] Triebel, H., Theory of function spaces II (1992), Basel: Birkhäuser, Basel · Zbl 0763.46025
[74] van Hemmen, JL; Ando, T., An inequality for trace ideals, Commun. Math. Phys., 76, 143-148 (1980) · Zbl 0449.47036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.