The extension of Darboux’s method to systems in involution of partial differential equations of arbitrary order in two independent variables. (English) Zbl 0302.35029


35G20 Nonlinear higher-order PDEs
35A25 Other special methods applied to PDEs
58A10 Differential forms in global analysis
Full Text: DOI


[1] E. Cartan: Sur integration des systemes d’equations aux differentielles totales. Ann. Sci. Ecole Norm. Sup., 3e serie, 18, 241-311 (1901). · JFM 32.0351.04
[2] E. Cartan: Sur la structure des groupes infinis de transformations. Ann. Sci. Ecole Norm. Sup., 3e serie, 21, 153-206 (1904). · JFM 35.0176.04
[3] E. Cartan: Les systemes de Pfaff a cinq variables et les equations aux derivees partielles du second ordre. Ann. Sci. Ecole Norm. Sup., 3e serie, 27, 109- 192 (1910). · JFM 41.0417.01
[4] E. Cartan: Lemons sur les invariants integraux. Hermann, Paris (1922). · Zbl 0212.12501
[5] E. Cartan: Les systemes differentiels exterieurs et leurs application geometriques. Hermann, Paris (1945). · Zbl 0063.00734
[6] G. Cerf: Sur les transformations des equations aux derivees partielles d’ordre quelconque a deux variables independentes. J. de Math., 7e serie, 4, 309-412 (1918). · JFM 46.0716.04
[7] A. R. Forsyth: Theory of Differential Equations, Part IV, Vol. VI. Cambrige Univ. Press, London (1906). · JFM 37.0366.01
[8] E. Goursat: Lemons sur Pintegration des equations aux derivees partielles du second ordre a deux variables independentes, Tom. II. Hermann, Paris (1898). · JFM 29.0310.01
[9] E. Goursat: Legons sur le probleme de Pfaff. Hermann, Paris (1922). · JFM 48.0538.01
[10] Y. Matsushima: On a theorem concerning the prolongation of a differential system. Nagoya Math. J., 6, 1-16 (1953). · Zbl 0052.31905
[11] I. G. Petrovskii: Lectures on Partial Differential Equations (2nd ed.). Gos. Izd. Tekh.-Teor. Lit., Moscow (1953).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.