Nurijanyan, S.; Bokhove, O.; Maas, L. R. M. A new semi-analytical solution for inertial waves in a rectangular parallelepiped. (English) Zbl 1320.76119 Phys. Fluids 25, No. 12, Paper No. 126601, 21 p. (2013). Summary: A study of inertial gyroscopic waves in a rotating homogeneous fluid is undertaken both theoretically and numerically. A novel approach is presented to construct a semi-analytical solution of a linear three-dimensional fluid flow in a rotating rectangular parallelepiped bounded by solid walls. The three-dimensional solution is expanded in vertical modes to reduce the dynamics to the horizontal plane. On this horizontal plane, the two dimensional solution is constructed via superposition of “inertial” analogs of surface Poincaré and Kelvin waves reflecting from the walls. The infinite sum of inertial Poincaré waves has to cancel the normal flow of two inertial Kelvin waves near the boundaries. The wave system corresponding to every vertical mode results in an eigenvalue problem. Corresponding computations for rotationally modified surface gravity waves are in agreement with numerical values obtained by G. I. Taylor [“Tidal oscillations in gulfs and basins,” Proc. London Math. Soc., Ser. 2XX, 148–181 (1921)], D. B. Rao [“Free gravitational oscillations in rotating rectangular basins,” J. Fluid Mech. 25, 523–555 (1966)] and also, for inertial waves, by L. R. M. Maas [Fluid Dyn. Res. 33, No. 4, 373–401 (2003; Zbl 1032.76521)] upon truncation of an infinite matrix. The present approach enhances the currently available, structurally concise modal solution introduced by Maas. In contrast to Maas’ approach, our solution does not have any convergence issues in the interior and does not suffer from Gibbs phenomenon at the boundaries. Additionally, an alternative finite element method is used to contrast these two semi-analytical solutions with a purely numerical one. The main differences are discussed for a particular example and one eigenfrequency.{©2013 American Institute of Physics} Cited in 4 Documents MSC: 76U05 General theory of rotating fluids 76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction Citations:Zbl 1032.76521 PDFBibTeX XMLCite \textit{S. Nurijanyan} et al., Phys. Fluids 25, No. 12, Paper No. 126601, 21 p. (2013; Zbl 1320.76119) Full Text: DOI Link References: [1] Taylor, G. I., Tidal oscillations in gulfs and rectangular basins, Proc. London Math. Soc., 20, 148-181 (1922) · JFM 48.1099.03 · doi:10.1112/plms/s2-20.1.148 [2] Rayleigh, Lord, Notes concerning tidal oscillations upon a rotating globe, Proc. R. Soc. London, 82, 556, 448-464 (1909) · JFM 40.0815.03 · doi:10.1098/rspa.1909.0049 [3] Proudman, J., On the dynamic equation of the tides. Parts 1-3, Proc. London Math. Soc., Ser. 2, 18, 1-68 (1917) · JFM 47.0860.02 [4] Proudman, J., Note on the free tidal oscillations of a sea with slow rotation, Proc. London Math. Soc., s2-35, 75-82 (1933) · Zbl 0006.28503 · doi:10.1112/plms/s2-35.1.75 [5] LeBlond, P. H.; Mysak, L. A., Waves in the Ocean (1978) [6] Kelvin, L., Vibrations of a columnar vortex, Philos. Mag., 10, 155-168 (1880) · JFM 12.0698.01 [7] Bryan, G. H., The waves on a rotating liquid spheroid of finite ellipticity, Philos. Trans. R. Soc. London, Ser. A, 180, 187-219 (1889) · JFM 21.0967.01 · doi:10.1098/rsta.1889.0006 [8] Maas, L. R. M., On the amphidromic structure of inertial waves in a rectangular parallelepiped, Fluid Dyn. Res., 33, 373-401 (2003) · Zbl 1032.76521 · doi:10.1016/j.fluiddyn.2003.08.003 [9] Maas, L. R. M., Wave focussing and ensuing mean flow due to symmetry breaking in rotating fluids, J. Fluid Mech., 437, 13-28 (2001) · Zbl 1055.76056 · doi:10.1017/S0022112001004074 [10] Fultz, D., A note on overstability and the elastoid-inertia oscillations of Kelvin, Solberg and Bjerknes, J. Meteorol., 16, 199-208 (1959) · doi:10.1175/1520-0469(1959)016<0199:ANOOAT>2.0.CO;2 [11] McEwan, A. D., Inertial oscillations in a rotating fluid cylinder, J. Fluid Mech., 40, 603-640 (1970) · doi:10.1017/S0022112070000344 [12] Manasseh, R., Breakdown regimes of inertia waves in a precessing cylinder, J. Fluid Mech., 243, 261-296 (1992) · doi:10.1017/S0022112092002726 [13] Manasseh, R., Distortions of inertia waves in a rotating fluid cylinder forced near its fundamental mode resonance, J. Fluid Mech., 265, 345-370 (1994) · doi:10.1017/S0022112094000868 [14] Kobine, J. J., Inertial wave dynamics in a rotating and precessing cylinder, J. Fluid Mech., 303, 233-252 (1995) · doi:10.1017/S0022112095004253 [15] Thompson, R. O. R. Y., A mechanism for angular momentum mixing, Geophys. Astrophys. Fluid Dyn., 12, 221-234 (1979) · Zbl 0404.76093 · doi:10.1080/03091927908242691 [16] Aldridge, K. D.; Toomre, A., Axisymmetric oscillations of a fluid in a rotating spherical container, J. Fluid Mech., 37, 307-323 (1969) · doi:10.1017/S0022112069000565 [17] Malkus, W. V. R., Precession of the earth as the cause of geomagnetism, Science, 160, 259-264 (1968) · doi:10.1126/science.160.3825.259 [18] Vanyo, J.; Wilde, P.; Cardin, P.; Olson, P., Experiments on precessing flows in the earth”s liquid core, Geophys. J. Int., 121, 136-142 (1995) · doi:10.1111/j.1365-246X.1995.tb03516.x [19] Beardsley, R. C., An experimental study of inertial waves in a closed cone, Stud. Appl. Math., 49, 187-196 (1970) [20] Bewley, G. P.; Lathrop, D. P.; Maas, L. R. M.; Sreenivasan, K. R., Inertial waves in rotating grid turbulence, Phys. Fluids, 19, 071701 (2007) · Zbl 1182.76058 · doi:10.1063/1.2747679 [21] Lamriben, C.; Cortet, P. P.; Moisy, F.; Maas, L. R. M., Excitation of inertial modes in a closed grid turbulence experiment under rotation, Phys. Fluids, 23, 015102 (2011) · doi:10.1063/1.3540660 [22] Boisson, J.; Lamriben, C.; Maas, L. R. M.; Cortet, P.; Moisy, F., Inertial waves in rotating grid turbulence, Phys. Fluids, 24, 076602 (2012) · doi:10.1063/1.4731802 [23] Manders, A. M. M.; Maas, L. R. M., Observations of inertial waves in a rectangular basin with one sloping boundary, J. Fluid Mech., 493, 59-88 (2003) · Zbl 1072.76013 · doi:10.1017/S0022112003005998 [24] Rao, D., Free gravitational oscillations in rotating rectangular basins, J. Fluid Mech., 25, 523-555 (1966) · doi:10.1017/S0022112066000235 [25] Bokhove, O.; Johnson, E., Hybrid coastal and interior modes for two-dimensional flow in a cylindrical ocean, J. Phys. Oceanogr., 29, 93-118 (1999) · doi:10.1175/1520-0485(1999)029<0093:HCAIMF>2.0.CO;2 [26] Nurijanyan, S.; van der Vegt, J.; Bokhove, O., Hamiltonian discontinuous Galerkin FEM for linear, rotating incompressible Euler equations: Inertial waves, J. Comput. Phys., 241, 502-525 (2013) · Zbl 1349.76249 · doi:10.1016/j.jcp.2013.01.017 [27] Rieutord, M.; Georgeot, B.; Valdettaro, L., Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum, J. Fluid Mech., 435, 103-144 (2001) · Zbl 1013.76100 · doi:10.1017/S0022112001003718 [28] Bokhove, O.; Ambati, V. R., Hybrid Rossby-shelf modes in a laboratory ocean, J. Phys. Oceanogr., 39, 10, 2523-2542 (2009) · doi:10.1175/2009JPO4101.1 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.