×

Chebychev-Grübler-Kutzbach’s criterion for mobility calculation of multi-loop mechanisms revisited via theory of linear transformations. (English) Zbl 1069.70003

Summary: The paper presents a critical review of the well-known Chebychev-Grübler-Kutzbach’s criterion for global mobility calculation of multi-loop mechanisms. We emphasize on the limits of this criterion by applying it to three parallel robots and ascertaining that the results are erroneous. In fact, this criterion does not fit for many classical mechanisms or modern parallel robots. We explain why this criterion does not work for certain mechanisms, and we accurately limit its applicability. We found our proof on the theory of linear transformations. As far as we are aware, this paper presents for the first time an accurate applicability limitation of this well-known criterion with huge and long-time utilisation in analysis and synthesis of mechanisms.

MSC:

70B15 Kinematics of mechanisms and robots
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agrawal, V.P.; Rao, J.S., The mobility properties of kinematic chains, Mechanism and machine theory, 22, 497-504, (1987)
[2] Altman, F.G., Sonderformen raumlieher koppelgetriebe und grenzen ihrer verwendbarkeit, konstruktion, Werkstoffe versuchswesen, 4, 97-106, (1952)
[3] Angeles, J.; Gosselin, C., Détermination du degré de liberté des chaînes cinématiques, Trans. CSME, 12, 4, 219-226, (1988)
[4] Antonescu, P., Extending of structural formula of dobrovolski to the complex mechanisms with apparent family, (), Bucharest
[5] Artobolevskii, I.I., Theory of mechanisms and machines, (1953), Moscow (in Russian)
[6] Baker, J.E., Overconstrained 5-bars with parallel adjacent joint axes, Mechanism and machine theory, 13, 213-218, (1978)
[7] Bagci, C., Degrees of freedom of motion in mechanisms, ASME J engrg. industry B, 93, 140-148, (1971)
[8] Bennett, G.T., A new mechanism, Engineering, 76, 777-778, (1903)
[9] Boden, H., Zum zwanglauf gemischt räumlich-ebener getriebe, Maschinenbautechnik (getriebetechnik), 11, 612-615, (1962)
[10] Bogolyubov, A.N., History of the mechanics of machines, (1964), Kiev (in Russian)
[11] Bricard, R., Leçons de cinématique, vol. 2, (1927), Gauthier-Villars Paris
[12] Carricato, M.; Parenti-Castelli, V., Singularity-free fully-isotropic translational parallel mechanism, Int. J. robotics res., 21, 2, 161-174, (2002)
[13] Chebychev, P.A., 1869. Théorie des mécanismes connus sous le nom de parallélogrammes, 2^{ème} partie, Mémoires présentés à l’Académie impériale des sciences de Saint-Pétersbourg par divers savants
[14] Clavel, R., Delta, a fast robot with parallel geometry, ()
[15] Davies, T.H., Mechanical networks-II: formulae for degrees of mobility and redundancy, Mechanism and machine theory, 18, 103-106, (1983)
[16] Delassus, E., Sur LES systèmes articulés gauches, première partie, (), 455-499 · JFM 31.0683.03
[17] Delassus, E., Sur LES systèmes articulés gauches, deuxième partie, (), 119-152 · JFM 33.0731.03
[18] Delassus, E., LES chaînes articulés fermées et déformables à quatre membres, Bull. sci. math., 46, 283-304, (1922) · JFM 49.0566.06
[19] De Roberval, 1670. Nouvelle manière de balance, Mémoires de mathématiques et de physique, in: Tirez des registres de l’Académie Royale des Sciences depuis 1666 jusqu’à 1699, Tome X. Institut de France, Académie des sciences, pp. 494-496
[20] Dobrovolski, V.V., Dynamic analysis of statically constraint mechanisms, Akad. nauk SSSR, trudy sem. teorii masin i mekhanizmov, 8, 30, (1949), (in Russian)
[21] Dobrovolski, V.V., Theory of mechanisms, (1951), Moscow (in Russian)
[22] Dudiţă, F.; Diaconescu, D., Optimizarea structurala a mecanismelor, (1987), Tehnica Bucuresti
[23] Eckhardt, H.D., Kinematic design of machines and mechanisms, (1998), McGraw-Hill New York
[24] Fayet, M., Mécanismes multi-boucles - I: Détermination des espaces de torseurs cinématiques dans un mécanisme multi-boucles quelqonque, Mech. Mach. theory, 30, 201-217, (1995)
[25] Fayet, M.; Bonnet, P., Mécanismes multi-boucles - II: processus de détermination du rang des équations de liaison – distribution des mobilités, Mech. Mach. theory, 30, 219-232, (1995)
[26] Federhofer, K., Graphische kinematik und kinestostatik, (1932), Springer Berlin · JFM 58.0819.02
[27] Freudenstein, F.; Alizade, R., On the degree-of-freedom of mechanisms with variable general constraint, (), 52-56
[28] Gogu, G., 2002. Structural synthesis of parallel robotic manipulators with decoupled motions. Internal Technical Report, ROBEA MAX
[29] Gogu, G., Fully-isotropic T3R1-type parallel manipulators, (), 265-272
[30] Gogu, G., Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations, Eur. J. mech. A solids, 23, 1021-1039, (2004) · Zbl 1064.70002
[31] Goldberg, M., New five-bar and six-bar linkages in three dimensions, ASME J. mechanisms, 65, 649-661, (1943)
[32] Greenberg, M.D., Advanced engineering mathematics, (1989), Prentice-Hall New Jersey
[33] Gronowicz, A., Identifizierungs-methode der zwanglaufbedingungen von kinematischen ketten, Mechanism and machine theory, 16, 127-135, (1981)
[34] Grübler, M., Allgemeine eigenschaften der zwangläufigen ebenen kinematischen ketten, part I, Zivilingenieur, 29, 167-200, (1883) · JFM 15.0785.03
[35] Grübler, M., Allgemeine eigenschaften der zwangläufigen ebenen kinematischen ketten, part II, Verh. ver. bef. gew., 64, 179-223, (1885)
[36] Grübler, M., 1916. Das Kriterium der Zwänglaufigkeit der Schraubenkelten, Festschrift, O. Muhr. Zum 80, Gubertstag, Berlin
[37] Grübler, M., Getriebelehre: eine theorie des zwanglaufes und der ebenen mechanismen, (1917), Springer Berlin · JFM 46.1159.01
[38] Hervé, J.M., Analyse structurelle des mécanismes par groupe des déplacements, Mechanism and machine theory, 13, 437-450, (1978)
[39] Hervé, J.M., The Lie group of rigid body displacements, a fundamental tool for mechanism design, Mechanism and machine theory, 34, 719-730, (1999) · Zbl 1049.70506
[40] Hervé, J.M.; Sparacino, F., STAR, a new concept in robotics, ()
[41] Hochman, K.I., Kinematics of machinery, (1890), Odesa (in Russian)
[42] Hunt, K.H., Kinematic geometry of mechanisms, (1978), Oxford University Press Oxford · Zbl 0401.70001
[43] Kim, H.S.; Tsai, L.-W., Evaluation of a Cartesian parallel manipulator, (), 21-28
[44] Koenigs, G., Introduction à une théorie nouvelle des mécanismes. librairie scientifique A, (1905), Hermann Paris · JFM 36.0748.11
[45] Kolchin, I., Experiment in the construction of an expanded structural classification of mechanisms and a structural table based on it, (), Moscow (in Russian)
[46] Kong, X.; Gosselin, C.M., Type synthesis of linear translational parallel manipulators, (), 453-462
[47] Kutzbach, K., Mechanische leitungsverzweigung, ihre gesetze und anwendungen, Maschinenbau. betrieb., 8, 710-716, (1929)
[48] Mabie, H.H.; Reinholtz, C.F., Mechanisms and dynamics of machinery, (1987), Wiley New York
[49] Malytsheff, A.P., Analysis and synthesis of mechanisms with a viewpoint of their structure, Izvestiya tomskogo of technological institute, (1923), (in Russian)
[50] Manolescu, N.; Manafu, V., Sur la détermination du degré de mobilité des mécanismes, Bul. insit. politehnic bucuresti, 25, 45-66, (1963) · Zbl 0168.22401
[51] Manolescu, N., For a united point of view in the study of the structural analysis of kinematic chains and mechanisms, J. mechanisms, 3, 149-169, (1968)
[52] Moroskine, Y.F., General analysis of the theory of mechanisms, Akad. nauk. SSSR, trudy sem. teorii masin i mekhanizmov, 14, 25-50, (1954), (in Russian)
[53] Moroskine, Y.F., On the geometry of complex kinematic chains, Sov. phys. dokl., 3, 2, 269-272, (1958)
[54] Mruthyunjaya, T.S., Kinematic structure of mechanisms revisited, Mechanism and machine theory, 38, 279-320, (2003) · Zbl 1062.70531
[55] Myard, F.E., Contribution à la géométrie des systèmes articulés, Bull. soc. math. France, 59, 183-210, (1931) · Zbl 0004.16703
[56] Myszka, D.H., Machines and mechanisms: applied kinematic analysis, (2001), Prentice-Hall
[57] Norton, R.L., Design of machinery: an introduction to the synthesis and analysis of mechanisms and machines, (1999), McGraw-Hill Boston
[58] Ozol, O.T., On a new structural formula of mechanisms, Izv. vyssh. uchebn. zaved. maschinostroenie, 2, (1963), (in Russian)
[59] Phillips, J., Freedom in machinery, vol. I, introducing screw theory, (1984), Cambridge University Press Cambridge
[60] Phillips, J., Freedom in machinery, vol. II, screw theory exemplified, (1990), Cambridge University Press Cambridge
[61] Pierrot, F., Company, O., 1999. H4: a new family of 4 dof parallel robot, IEEE/ASME International Conference on Advanced Intelligent Mechatrionics, Atlanta
[62] Rico, J.M.; Ravani, B., Mobility of spatial multi-loop and mixed linkages, (), 133-142
[63] Rössner, W., Zur strukturellen ordnung der getriebe, Wissenschaft. tech. univ. Dresden, 10, 1101-1115, (1961)
[64] Sarrus, 1853. Note sur la transformation des mouvements rectilignes alternatifs en mouvements circulaires et réciproquement, in: Comptes rendus hebdomadaires des séances. Académie des Sciences, Paris, pp. 1036-1038
[65] Somov, P.I., On the degree of freedom of motion of kinematic chains, J. phys. chem. soc. Russia, 19, 9, 443-477, (1887), (in Russian)
[66] Sylvester, J.J., On recent discoveries in mechanical conversion of motion, Proc. roy. inst. great britain, 7, 5, 179-198, (1874)
[67] Tsai, L.-W., Robot analysis: the mechanics of serial and parallel manipulators, (1999), Willey
[68] Voinea, R.; Atanasiu, M., Contribution à l’étude de la structure des chaînes cinématiques, Bul. inst. politechnic bucuresti XXII, 29-77, (1960)
[69] Waldron, K.J., The constraint analysis of mechanisms, J. mechanisms, 1, 101-114, (1966)
[70] Waldron, K.J., Overconstrained linkages, Environment and planning B, 6, 393-402, (1979)
[71] Waldron, K.J.; Kinzel, G.L., Kinematics, dynamics, and design of machinery, (1999), Wiley
[72] Wenger, P.; Chablat, D., Kinematic analysis of a new parallel machine tool: the orthoglide, (), 305-314
[73] Wittenbauer, F., Grapische dynamik, (1923), Springer Berlin · JFM 49.0572.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.