×

Anharmonic solutions to the Riccati equation and elliptic modular functions. (English) Zbl 1435.12004

The authors consider the differential field \((\mathbb{F}=\mathbb{C}(t),\delta =d/dt)\) and an irreducible algebraic equation (E) in one variable of degree \(\geq 4\). They assume that a root of (E) is a solution to the Riccati differential equation \(u'+B_0+B_1u+B_2u^2=0\), \(B_j\in \mathbb{F}\). They construct a large class of polynomials as in (E), i.e. they prove the existence of a polynomial \(F_n(x,y)\in \mathbb{C}(x)[y]\) such that for almost all \(T\in \mathbb{F}\setminus \mathbb{C}\), all roots of the equation \(F_n(x,T)=0\) are solutions to the same Riccati equation. They give an example of a degree 3 irreducible polynomial equation satisfied by certain weight 2 modular forms for the subgroup \(\Gamma (2)\), whose roots satisfy a common Riccati equation on the differential field \((\mathbb{C}(E_2,E_4,E_6),d/d\tau )\), \(E_j(\tau )\) being the Eisenstein series of weight \(j\). These solutions are related to a Darboux-Halphen system. They also consider the question for which potentials \(q\in \mathbb{C}(\mathcal{P}, \mathcal{P}')\) (where \(\mathcal{P}\) is the classical Weierstrass function) does the Riccati equation \(dY/dz+Y^2=q\) admit algebraic solutions over \(\mathbb{C}(\mathcal{P}, \mathcal{P}')\).

MSC:

12H20 Abstract differential equations
11F03 Modular and automorphic functions
33E05 Elliptic functions and integrals
12H05 Differential algebra
34M15 Algebraic aspects (differential-algebraic, hypertranscendence, group-theoretical) of ordinary differential equations in the complex domain
34A26 Geometric methods in ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
34C14 Symmetries, invariants of ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] L. Autonne, Sur certaines équations des quatrimès et cinquimès degrés, Bull. Soc. Math. France 28 (1900), 90-107. · JFM 31.0095.02
[2] L. Autonne, Sur les équations algébriques dont toutes les racines sont solutions d’une même équation de Riccati, J. Math. Pures Appl. (9) 6 (1900), 157-214. · JFM 31.0351.01
[3] F. Baldassarri, On second-order linear differential equations with algebraic solutions on algebraic curves, Amer. J. Math. 102 (1980), 517-535. · Zbl 0438.34007
[4] F. Baldassarri and B. Dwork, On second-order linear differential equations with algebraic solutions, Amer. J. Math. 101 (1979), 42-76. · Zbl 0425.34007
[5] F. Brioschi, Sopra una classe di forme binarie, Annali di Mat. (2) 8 (1877), 24-42. · JFM 09.0080.01
[6] J. H. Bruinier, G. van der Geer, G. Harder and D. Zagier, The 1-2-3 of Modular Forms. Lectures at a Summer School in Nordfjordeid, Norway, June 2004, Springer, Berlin, 2008.
[7] G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Darboux Bull. (2) 2 (1878), 60-96, 123-144, 151-200. · JFM 10.0214.01
[8] I. Dolgachev, Lectures on modular forms, preprint, · Zbl 0575.14036
[9] J. Drach, Sur la réduction de l’équation générale de Riccati, C. R. Acad. Sci. Paris 205 (1937), 700-704. · Zbl 0017.30702
[10] D. Duverney, K. Nishioka, K. Nishioka and L. Shiokawa, Transcendence of Jacobi’s theta series, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 9, 202-203. · Zbl 0884.11030
[11] F. G. Frobenius and L. Stickelberger, Über die Differentiation der elliptischen Funktionen nach den Perioden und Invarianten, J. Reine Angew. Math. 92 (1882), 311-327. · JFM 14.0388.01
[12] E. Hille, Ordinary Differential Equations in the Complex Domain, John Wiley & Sons, New York, 1976. · Zbl 0343.34007
[13] C. Jordan, Cours d’Analyse de l’Ecole Polytechnique. Seconde Partie, Gauthiers-Villars, Paris, 1896. · JFM 27.0223.11
[14] F. Klein, Lectures on the Icosahedron and the Solution to Equations of Fifth Degree, Dover, New York, 1956.
[15] F. Klein, Über lineare Differentialgleichungen, Math. Ann. 12 (1877), no. 2, 167-169. · JFM 09.0235.01
[16] J. P. S. Kung and G.-C. Rota, The invariant theory of binary forms, Bull. Amer. Math. Soc. (N.S.) 10 (1984), no. 1, 27-85. · Zbl 0577.15020
[17] K. Lamotke, Regular Solids and Isolated Singularities, Adv. Lect. Math., Friedrich Vieweg & Sohn, Braunschweig, 1986. · Zbl 0584.32014
[18] K. Mahler, On algebraic differential equations satisfied by automorphic functions, J. Aust. Math. Soc. 10 (1969), no. 3-4, 450-455. · Zbl 0207.08302
[19] P. Olver, Classical Invariant Theory, London Math. Soc. Stud. Texts, Cambridge University Press, Cambridge, 1999. · Zbl 0971.13004
[20] P. Painlevé, Leçons sur la théorie analytique des équations différentielles, professées à Stockholm (septembre, octobre, novembre 1895) sur l’invitation de S. M. le Roi de Suède et de Norvège, A. Hermann, Paris, 1897. · JFM 28.0262.01
[21] E. Picard, Applications de la théorie des complexes linéaires à l’étude des surfaces et des courbes gauches, Ann. Sci. Éc. Norm. Supér. 2 (1877), no. 6, 342-343.
[22] M. J. Prelle and M. F. Singer, Elementary first integrals of differential equations, Trans. Amer. Math. Soc. 279 (1983), no. 1, 215-229. · Zbl 0527.12016
[23] S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.
[24] J. P. Serre, Cours d’arithmétique, Presses Universitaires de France, Paris, 1973.
[25] M. F. Singer and M. Van Der Put, Galois Theory of Linear Differential Equations, Grundlehren Math. Wiss. 328, Springer, Berlin, 2003. · Zbl 1036.12008
[26] B. Van der Pol, On a non-linear partial differential equation satisfied by the logarithm derivative of the Jacobian theta functions, with arithmetical applications. I, II, Indag. Math. 13 (1951), 261-271, 272-284. · Zbl 0042.27301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.