zbMATH — the first resource for mathematics

Problemi di razionalità ed analisi indeterminata. (Italian) Zbl 0081.15501
Full Text: DOI
[1] M. Baldassari,Su un criterio di riduzione per i sistemi algebrici di varietà. Rend. Sem. Mat. Univ. Padova, t. 19 (1950).
[2] A. Comessatti,Intorno ad un classico teorema di unisecanti. Boll. Un. Mat. It., t. 18 (1940). · JFM 66.0797.02
[3] F. Conforto,Su un classico teorema di Noether etc. ... Rend. Acc. It. (7), t. 2 (1940).
[4] F. Enriques,Sur les problèmes qui se rapportent à la resolution des equations al-gebriques renferment plusieurs inconnues. Math. Ann., t. 51 (1897). · JFM 29.0073.03
[5] J. L. Lagrange,Sur la resolution des problèmes indéterminés de second dégrè. Berlin, Abh. t. 23 (1769), “Oeuvres{”, t. 2, p. 377, § II.}
[6] D. Montesano,Sui vari tipi di congruenze lineari di coniche dello spazio. Rend. Acc. Napoli, 1895. · JFM 26.0624.02
[7] U. Morin,Sulle varietà algebriche che contengono un sistema di curve razionali, Rend. Sem. Mat. Univ. Padova, t. 9 (1938). · JFM 64.1328.01
[8] M. Noether,Ueber flächen welche Schaaren rationaler Curven besitzen. Math. Ann., t. 3 (1871).
[9] L. Roth,Algebraic threefolds with special regard to problemes of rationality. Ergebnisse d. Math. und. ihren Grentgebiete, Springer, Berlin (1955). · Zbl 0066.14704
[10] Th. Skolen,Diophartische Gleichungen. Erg. d, Math. und ihrer Grentgebiete.
[11] E. D. Tagg,Surfaces wich contain an irrational percil of rational curves. Journal of London Math. Soc., t. 14 (1939). · Zbl 0021.25401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.